Java面试篇:Redis使用场景问题(缓存穿透,缓存击穿,缓存雪崩,双写一致性,Redis持久化,数据过期策略,数据淘汰策略)

目录

  • 1.缓存穿透
    • 解决方案一:缓存空数据
    • 解决方案二:布隆过滤器
  • 2.缓存击穿
    • 解决方案一:互斥锁
    • 解决方案二:设置当前key逻辑过期
  • 3.缓存雪崩
    • 1.给不同的Key的TTL添加随机值
    • 2.利用Redis集群提高服务的可用性
    • 3.给缓存业务添加降级限流策略
    • 4.给业务添加多级缓存
  • 4.双写一致性
    • 1.问题:redis做为缓存,mysql的数据如何与redis进行同步呢?
    • 2.异步通知保证数据的最终一致性
  • 5.Redis持久化的方式
    • 1.RDB
      • RDB的执行原理
    • 2.AOF
    • 3.RDB与AOF对比
  • 6.Redis数据过期策略
    • 1.惰性删除
    • 2.定期删除
  • 7.数据淘汰策略
    • 使用建议:

1.缓存穿透

①缓存穿透是指在使用缓存系统时,频繁请求一个不存在于缓存中的数据,导致缓存系统无法起到预期的加速作用,而直接请求数据库或其他底层存储系统。

②缓存系统一般通过将数据存储在内存中,以提高读取速度。当一个请求到达时,缓存系统会先检查是否有缓存数据,如果有则直接返回,如果没有则从底层存储系统中读取数据,并将其缓存起来以备后续使用。

③然而,如果频繁请求一个不存在于缓存中的数据,每次请求都会直接访问底层存储系统,无法从缓存中获取数据,导致缓存系统无法发挥作用。这种情况下,即使缓存系统存在,仍然会对底层存储系统产生很大的负载,甚至可能导致底层存储系统崩溃。

④缓存穿透可能会发生的原因包括恶意攻击、大量的并发请求和数据更新等。为了解决缓存穿透的问题,可以采取一些修复措施,例如使用布隆过滤器来过滤掉不存在的数据请求、设置缓存的过期时间对缓存进行预热等。

在这里插入图片描述

查询一个不存在的数据,mysql查询不到数据也不会直接写入缓存,就会导致每次请求都查数据库

解决方案一:缓存空数据

缓存空数据,查询返回的数据为空,仍把这个空结果进行缓存。
优点:简单
缺点:消耗内存,可能会发生不一致的问题

在这里插入图片描述

解决方案二:布隆过滤器

布隆过滤器(Bloom Filter)是一种用于判断某个元素是否存在于集合中的数据结构,它的特点是高效地判断一个元素是否存在于集合中,并且占用的内存空间相对较小。

布隆过滤器的核心是一个位数组(bit array)和一组哈希函数。当一个元素被加入布隆过滤器时,通过哈希函数将其映射为多个位数组的索引位置,并将这些位置的值设置为1。当判断一个元素是否存在于布隆过滤器时,同样通过哈希函数将其映射为多个位数组的索引位置,并检查这些位置的值是否都为1。如果有任何一个位置的值为0,则可以确定该元素不存在于集合中;如果所有位置的值都为1,则表示该元素可能存在于集合中,但不能确定是否真的存在,可能会存在误判的情况。

布隆过滤器的优点是占用的内存空间相对较小,且判断的速度非常快。但它也有一些缺点,其中最主要的就是可能存在误判的情况。由于布隆过滤器使用了多个哈希函数,所以在判断元素是否存在时可能会产生哈希冲突,导致误判。另外,布隆过滤器无法删除已经加入的元素,因为删除一个元素可能会影响到其他元素的判断结果。

布隆过滤器在实际应用中常用于缓存、数据库查询等领域,可以有效地提高查询效率和减轻底层存储系统的负载
在这里插入图片描述
布隆过滤器作用:布隆过滤器可以用于检索一个元素是否在一个集合中。

bitmap(位图)︰相当于是一个以(bit)位为单位的数组,数组中每个单元只能存储二进制数0或1

在这里插入图片描述

误判率:数组越小误判率就越大,数组越大误判率就越小,但是同时带来了更多的内存消耗。
在这里插入图片描述

优点:内存占用较少,没有多余key
缺点:实现复杂,存在误判

2.缓存击穿

缓存击穿:给某一个key设置了过期时间,当key过期的时候,恰好这时间点对这个key有大量的并发请求过来,这些并发的请求可能会瞬间把DB压垮.

在这里插入图片描述

解决方案一:互斥锁

  • 强一致
  • 性能差

当缓存失效时,不立即去load db,先使用如Redis的setnx去设置一个互斥锁,当操作成功返回时再进行load db的操作并回设缓存,否则重试get缓存的方法

在这里插入图片描述

解决方案二:设置当前key逻辑过期

  • 高可用,性能优
  • 不能保证数据绝对一致

①在设置key的时候,设置一个过期时间字段一块存入缓存中,不给当前key设置过期时间
②当查询的时候,从redis取出数据后判断时间是否过期
③如果过期则开通另外一个线程进行数据同步,当前线程正常返回数据,这个数据不是最新

在这里插入图片描述

3.缓存雪崩

缓存雪崩是指在同一时段大量的缓存key同时失效或者Redis服务宕机,导致大量请求到达数据库,带来巨大压力。

在这里插入图片描述

1.给不同的Key的TTL添加随机值

合理设置缓存失效时间:根据业务场景和数据特点设置合理的缓存失效时间,避免大量数据在同一时间失效。可以根据数据的访问频率和重要性来设置不同的失效时间

解决方案主要是可以将缓存失效时间分散开,比如可以在原有的失效时间基础上增加一个随机值,比如1-5分钟随机,这样每一个缓存的过期时间的重复率就会降低,就很难引发集体失效的事件

2.利用Redis集群提高服务的可用性

哨兵模式、集群模式

  1. 数据分片:Redis 集群可以将数据按照一定的规则分片存储在不同的节点上,以提高数据处理能力和并发访问能力。

  2. 主从复制:通过配置 Redis 主从复制,可以将主节点的数据同步到多个从节点,实现数据的备份和故障恢复。当主节点发生故障时,从节点可以自动切换为主节点,保证服务的可用性。

  3. Sentinel 哨兵机制:Redis Sentinel 是 Redis 自带的高可用性解决方案,可以监控主节点和从节点的状态,并在主节点故障时自动选举新的主节点。哨兵还可以监控和修复其他节点的故障。

  4. 高可用性架构:搭建 Redis 集群时可以采用一主多从的高可用性架构,通过增加主节点和从节点来提高服务的可用性和并发处理能力。

  5. 集群模式:Redis 3.0 版本引入了 Cluster 集群模式,可以实现数据分片和自动故障转移。利用 Redis Cluster 可以搭建分布式的 Redis 集群,提高数据存储和处理的能力。

  6. 客户端链接失败重试:在客户端访问 Redis 集群时,可以设置失败重试机制,当某个节点连接失败时,自动尝试连接其他可用节点,提高服务的可用性。

3.给缓存业务添加降级限流策略

ngxin或spring cloud gateway

降级可做为系统的保底策略,适用于穿透、击穿、雪崩
限流降级:在高并发情况下,适当地对请求进行限流或降级,保护后端服务器的稳定性。

4.给业务添加多级缓存

Guava或Caffeine
使用多级缓存:将缓存分为多个层级,比如本地缓存和分布式缓存。
本地缓存可以使用内存,而分布式缓存可以使用 Redis。
这样即使 Redis 出现问题,本地缓存仍然可以提供部分服务。

4.双写一致性

1.问题:redis做为缓存,mysql的数据如何与redis进行同步呢?

可以通过以下几种方式将MySQL的数据同步到Redis缓存中:

  1. 手动同步:当MySQL中的数据发生变化时,手动编写代码将这些变化同步到Redis中。这可以通过使用MySQL的触发器或在代码中监听数据变化事件来实现。在触发器或事件中,将相应的数据插入、更新或删除到Redis中。

  2. 定时同步:定时将MySQL中的数据同步到Redis中。可以使用定时任务工具(例如Cron)来实现。设置一个定时任务,定期查询MySQL中的数据,然后将查询结果同步到Redis中。

  3. 增量同步:记录MySQL中数据的变化,只将发生变化的数据同步到Redis中。可以通过使用MySQL的二进制日志(binlog)来捕获MySQL中所有的修改操作,然后解析binlog,将修改的数据同步到Redis中。

  4. 使用消息队列:将MySQL中的数据变化通过消息队列传递给Redis,然后Redis消费这些消息来同步数据。可以使用消息队列工具(如RabbitMQ或Kafka)来实现。当MySQL中的数据发生变化时,将变化的数据作为消息发布到消息队列中,然后Redis作为消费者从消息队列中获取消息并将数据同步到Redis中。

无论使用哪种方式进行同步,都需要注意数据的一致性和并发性。在同步过程中,需要考虑数据的读写锁、事务处理和冲突解决等问题,以确保数据在MySQL和Redis之间的一致性。

双写一致性:当修改了数据库的数据也要同时更新缓存的数据,缓存和数据库的数据要保持一致

在这里插入图片描述

  • 读操作:缓存命中,直接返回;缓存未命中查询数据库,写入缓存,设定超时时间
  • 写操作:延迟双删
    在这里插入图片描述

共享锁:读锁readLock,加锁之后,其他线程可以共享读操作
排他锁:也叫独占锁writeLock,加锁之后,阻塞其他线程读写操作

在这里插入图片描述

2.异步通知保证数据的最终一致性

使用MQ中间中间件,更新数据之后,通知缓存删除

在这里插入图片描述
利用canal中间件,不需要修改业务代码,伪装为mysql的一个从节点,canal通过读取binlog数据更新缓存
在这里插入图片描述

二进制日志(BINLOG)记录了所有的DDL(数据定义语言)语句和DML (数据操纵语言)语句
但不包括数据查询(SELECT、SHOW)语句。

5.Redis持久化的方式

1.RDB

RDB全称Redis Database Backup file (Redis数据备份文件),也被叫做Redis数据快照。简单来说就是把内存中的所有数据都记录到磁盘中。当Redis实例故障重启后,从磁盘读取快照文件,恢复数据

Redis内部有触发RDB的机制,可以在redis.conf文件中找到.

RDB的执行原理

bgsave开始时会fork主进程得到子进程,子进程共享主进程的内存数据
完成fork后读取内存数据并写入RDB文件。

fork采用的是copy-on-write技术:

  • 当主进程执行读操作时,访问共享内存;
  • 当主进程执行写操作时,则会拷贝一份数据,执行写操作。

在这里插入图片描述

2.AOF

AOF全称为Append Only File(追加文件)。
Redis处理的每一个写命令都会记录在AOF文件,可以看做是命令日志文件

AOF默认是关闭的,需要修改redis.conf配置文件来开启AOF。

AOF的命令记录的频率也可以通过redis.conf文件来配:

在这里插入图片描述

因为是记录命令,AOF文件会比RDB文件大的多
而且AOF会记录对同一个key的多次写操作,但只有最后一次写操作才有意义。
通过执行bgrewriteaof命令,可以让AOF文件执行重写功能,用最少的命令达到相同效果。

Redis也会在触发阈值时自动去重写AOF文件。阈值也可以在redis.conf中配置

在这里插入图片描述

3.RDB与AOF对比

RDB和AOF各有自己的优缺点,如果对数据安全性要求较高,在实际开发中往往会结合两者来使用。

在这里插入图片描述

6.Redis数据过期策略

Redis对数据设置数据的有效时间,数据过期以后,就需要将数据从内存中删除掉。可以按照不同的规则进行删除,这种删除规则就被称之为数据的删除策略(数据过期策略)。

1.惰性删除

设置该key过期时间后,我们不去管它,当需要该key时,我们在检查其是否过期,如果过期,我们就删掉它,反之返回该key.

  • 优点∶对CPU友好,只会在使用该key时才会进行过期检查,对于很多用不到的key不用浪费时间进行过期检查
  • 缺点∶对内存不友好,如果一个key已经过期,但是一直没有使用,那么该key就会一直存在内存中,内存永远不会释放

2.定期删除

每隔一段时间,我们就对一些key进行检查,删除里面过期的key(从一定数量的数据库中取出一定数量的随机key进行检查,并删除其中的过期key)。

定期清理有两种模式:

  • SLOW模式是定时任务,执行频率默认为10hz,每次不超过25ms,以通过修改配置文件redis.conf的hz选项来调整这个次数
  • FAST模式执行频率不固定,但两次间隔不低于2ms,每次耗时不超过1ms

优点:可以通过限制删除操作执行的时长和频率来减少删除操作对CPU的影响。另外定期删除,也能有效释放过期键占用的内存。
缺点:难以确定删除操作执行的时长和频率。

Redis的过期删除策略:惰性删除+定期删除两种策略进行配合使用

7.数据淘汰策略

当Redis中的内存不够用时,此时在向Redis中添加新的key,那么Redis就会按照某一种规则将内存中的数据删除掉,这种数据的删除规则被称之为内存的淘汰策略

①LRU (Least Recently Used)最近最少使用。用当前时间减去最后一次访问时间,这个值越大则淘汰优先级越高。
②LFU (Least Frequently Used)最少频率使用。会统计每个key的访问频率,值越小淘汰优先级越高。

Redis支持8种不同策略来选择要删除的key:

  • noeviction:不淘汰任何key,但是内存满时不允许写入新数据,默认就是这种策略
  • volatile-ttl:对设置了TTL的key,比较key的剩余TTL值,TTL越小越先被淘汰
  • allkeys-random: 对全体key,随机进行淘汰
  • volatile-random:对设置了TTL的key,随机进行淘汰
  • allkeys-Iru:对全体key,基于LRU算法进行淘汰
  • volatile-lru:对设置了TTL的key,基于LRU算法进行淘汰
  • allkeys-lfu: 对全体key,基于LFU算法进行淘汰
  • volatile-lfu:对设置了TTL的key,基于LFU算法进行淘汰

使用建议:

1.优先使用 alkeys-lru 策略。充分利用LRU算法的优势,把最近最常访问的数据留在缓存中。如果业务有明显的冷热数据区分,建议使用。
2.如果业务中数据访问频率差别不大,没有明显冷热数据区分,建议使用allkeys-random,随机选择淘汰。
3.如果业务中有置顶的需求,可以使用volatile-lru策略,同时置顶数据不设置过期时间,这些数据就一直不被删除,会淘汰其他设置过期时间的数据。
4.如果业务中有短时高频访问的数据,可以使用allkeys-lfu或 volatile-lfu策略

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/286449.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MySQL substr函数使用详解

博主猫头虎的技术世界 🌟 欢迎来到猫头虎的博客 — 探索技术的无限可能! 专栏链接: 🔗 精选专栏: 《面试题大全》 — 面试准备的宝典!《IDEA开发秘籍》 — 提升你的IDEA技能!《100天精通鸿蒙》 …

景联文科技上新高质量大模型训练数据!

在过去的一年中,人工智能领域呈现出了风起云涌的态势,其中模型架构、训练数据、多模态技术、超长上下文处理以及智能体发展等方面均取得了突飞猛进的发展。 在3月24日举办的2024全球开发者先锋大会的大模型前沿论坛上,上海人工智能实验室的领…

c语言--内存函数的使用(memcpy、memcmp、memset、memmove)

目录 一、memcpy()1.1声明1.2参数1.3返回值1.4memcpy的使用1.5memcpy模拟使用1.6注意 二、memmove()2.1声明2.2参数2.3返回值2.4使用2.5memmove()模拟实现 三、memset3.1声明3.2参数3.3返回值3.4使用 四、memcmp()4.1声明4.2参数4.3返回值4.4使用 五、注…

MySQL-extra常见的额外信息

本文为大家介绍MySQL查看执行计划时,extra常见的额外信息 Using index 表示使用了覆盖索引,即通过索引树可以直接获取数据,不需要回表。 表结构: CREATE TABLE t1 (id int(11) NOT NULL AUTO_INCREMENT,name varchar(255) DEFAULT NULL,ag…

IP SSL证书注册流程

使用IP地址申请SSL证书,需要用公网IP地址申请,申请之前确保直接的IP地址可以开放80或者443端口两者选择1个就好,端口不需要一直开放,只要认证的几分钟内开放就可以了,然后IP地址根目录可以上传txt文件。 IP SSL证书认…

vue3+vite - 报错 import.meta.glob() can only accept string literals.(详细解决方案)

报错说明 在vue3+vite项目中,解决报错: [plugin:vite:import-analysis] import.meta.glob() can only accept string literals. 如果我们报错差不多,就可以完美搞定这个错误。 解决教程 这个错误,是因为

【STM32嵌入式系统设计与开发】——9Timer(定时器中断实验)

这里写目录标题 一、任务描述二、任务实施1、ActiveBeep工程文件夹创建2、函数编辑(1)主函数编辑(2)USART1初始化函数(usart1_init())(3)USART数据发送函数( USART1_Send_Data(&…

蓝桥杯学习笔记(贪心)

在很久很久以前,有几个部落居住在平原上,依次编号为1到n。第之个部落的人数为 t 有一年发生了灾荒,年轻的政治家小蓝想要说服所有部落一同应对灾荒,他能通过谈判来说服部落进行联台。 每次谈判,小蓝只能邀请两个部落参…

HarborCDN技术分析

一、介绍 简要介绍 ​​Harbor​​ 是由VMware公司开源的企业级的Docker Registry管理项目,它包括权限管理(RBAC)、LDAP、日志审核、管理界面、自我注册、镜像复制和中文支持等功能。Harbor 的所有组件都在 Dcoker 中部署,所以 Harbor 可使用 Docker C…

php反序列化刷题1

[SWPUCTF 2021 新生赛]ez_unserialize 查看源代码想到robots协议 看这个代码比较简单 直接让adminadmin passwdctf就行了 poc <?php class wllm {public $admin;public $passwd; }$p new wllm(); $p->admin "admin"; $p->passwd "ctf"; ec…

Redis中的事件

事件 概述 Redis服务器是一个事件驱动程序:服务器需要处理以下两类事件: 1.文件事件(file event):Redis服务器通过套接字与客户端(或者其他Redis服务器)进行连接&#xff0c;而文件事件就是服务器对套接字操作的抽象。服务器与客户端(或者其他服务器)的通信会产生相应的文件…

java串口接收和发送消息集成Springboot

写在前面&#xff1a;1、jdk我用的1.8.0_31 ,不能用太高的java版本。 2、&#xff08;1&#xff09;将rxtxParallel.dll和rxtxSerial.dll文件放到${JAVA_HOME}&#xff08;jdk目录,不是jre目录&#xff09;\jre\bin目录下 如&#xff1a; C:\Program Files\Java\jdk1.8.0_31\…

1升级powershell后才能安装WSL2--最后安装linux--Ubuntu 22.04.3 LTS

视频 https://www.bilibili.com/video/BV1uH4y1W7UX特殊开启–Hyper-V虚拟机 把一下代码保存到【a.bat】的执行文件中&#xff0c;进行Hyper-V虚拟机的安装开启【Windows 批处理文件 (.bat)】 pushd "%~dp0" dir /b %SystemRoot%\servicing\Packages\*Hyper-V*.mu…

fifo ip核 ————读写时钟同步

1.原理 timescale 1ns/1ns module tb_fifo();reg sys_clk ; reg sys_rst_n ; reg [7:0] pi_data ; reg rd_req ; reg wr_req ; reg [2:0] cnt;wire empty ; wire full ; wire [7:0] po_data ; wire [7:0] usedw ;initial begins…

203基于matlab的曲柄滑块机构的运动学仿真分析GUI

基于matlab的曲柄滑块机构的运动学仿真分析GUI&#xff0c;包括《系统仿真与matlab》综合试题文档。分析滑块速度、角速度&#xff0c;曲轴投影长。曲柄滑块机构的动画。程序已调通&#xff0c;可直接运行。 203 曲柄滑块机构 运动学仿真分析 - 小红书 (xiaohongshu.com)

SQLiteC/C++接口详细介绍sqlite3_stmt类(十一)

返回&#xff1a;SQLite—系列文章目录 上一篇&#xff1a;SQLiteC/C接口详细介绍sqlite3_stmt类&#xff08;十&#xff09; 下一篇&#xff1a; SQLiteC/C接口详细介绍sqlite3_stmt类&#xff08;十二&#xff09; 43、sqlite3_reset sqlite3_reset 函数用于重置已经编…

Linux:http协议初步认识

文章目录 OSI七层模型http协议域名路径信息请求和响应 编写一个httpserver OSI七层模型 在结束了前面对于序列化反序列化等内容的学习后&#xff0c;重新回到对于OSI模型的部分 如上所示的是对于OSI接口的示意图&#xff0c;在这当中可以看到会话层的概念&#xff0c;会话层的…

word文件如何转PDF格式?word转PDF的方法

在当今数字化时代&#xff0c;文档格式的转换已成为日常生活和工作中不可或缺的一部分。其中&#xff0c;将Word文档转换为PDF格式更是受到了广大用户的青睐。本文将详细介绍Word转PDF的方法&#xff0c;帮助读者轻松实现文档格式的转换&#xff0c;并探讨转换过程中的注意事项…

LeetCode 61. 旋转链表

给你一个链表的头节点 head &#xff0c;旋转链表&#xff0c;将链表每个节点向右移动 k 个位置。 示例 1&#xff1a; 输入&#xff1a;head [1,2,3,4,5], k 2 输出&#xff1a;[4,5,1,2,3] 示例 2&#xff1a; 输入&#xff1a;head [0,1,2], k 4 输出&#xff1a;[…

yolov8直接调用zed相机实现三维测距(python)

yolov8直接调用zed相机实现三维测距&#xff08;python&#xff09; 1. 相关配置2. 相关代码3. 实验结果 相关链接 此项目直接调用zed相机实现三维测距&#xff0c;无需标定&#xff0c;相关内容如下&#xff1a; 1.yolov5直接调用zed相机实现三维测距&#xff08;python&#…