【C语言】结构体

在这里插入图片描述

个人主页点这里~


结构体

  • 一、结构体类型的声明
    • 1、结构的声明
    • 2、结构体变量的创建和初始化
    • 3、声明时的特殊情况
    • 4、自引用
  • 二、结构体内存对齐
    • 1、对齐规则
    • 2、存在内存对齐的原因
    • 3、修改默认对齐数
  • 三、结构体传参
  • 四、结构体实现位段

一、结构体类型的声明

我们在指针终篇中提到过结构体的这一部分内容(详情请阅拙作终の指针)现在我们来整个展开叙述一下

1、结构的声明

struct tag
{member-list;
}variable-list;

花括号 { } 中放的是成员变量,结构的每个成员变量都可以是不同的类型,每一个被定义的结构体中都要有至少一个成员变量,结构是一些值的集合。
定义一个人

struct man
{char name[20];//名字int age;//年龄char sex[5];//性别char id[20];//身份证号
};

2、结构体变量的创建和初始化

#include <stdio.h>
struct Stu
{char name[20];//名字int age;//年龄char sex[5];//性别char id[20];//身份证号int main(){struct Stu s = { "张三", 18, "男", "111111200602023215" };//结构体顺序初始化struct Stu s2 = { .age = 19, .name = "lisi", .id = "111111200502023222", .sex = "⼥" };//指定顺序初始化return 0;
};

3、声明时的特殊情况

匿名结构体类型,如果没有对结构体进行重命名的话,仅能使用一次

struct
{int a;char b;float c;
}x;

形如上面代码的结构体未重命名的话,使用这一次便被回收

4、自引用

自引用的正确方法:

struct Node
{int data;struct Node* next;
};

通过结构体指针的形式来进行自引用
并且结构体自引用是不能用typedef重命名的
像这个:

typedef struct
{int a;Node* next;
}Node;

我们会在创建Node结构体之前在结构体当中使用Node,所以不可取

二、结构体内存对齐

结构体内存对齐是计算结构体大小的一个必备条件

1、对齐规则

①结构体的第一个成员对齐到结构体变量起始位置的地址
②其他成员变量要对齐到对齐数的整数倍的地址处
对齐数:编译器默认的对齐数与该成员变量大小的较小值(我所使用的vs2022默认对齐数为8)
③结构体总大小一定为对齐数的整数倍
④如果结构体中嵌套了结构体,嵌套的结构体对齐到对齐到自己成员中最大对齐数的整数倍处,结构体的整体大小就是所有最大对齐数的整数倍
我们可以将大小看作一个数组,每一个位置都是一个字节

struct S1
{char c1;//1字节,<8,就将1字节放在0位置处int i;//4字节,<8,因为1,2,3位置不是4的整数倍,所以我们直接找到4位置,将4个字节放入char c2;//1字节,<8,放在8位置处
};

又因为现在指向9位置处,9不是最大对齐数4的整数倍,所以要指向12处,所以结构体S1的大小为12字节
printf打印一下:
在这里插入图片描述

struct S2
{char c1;//1字节,放到0位置char c2;//1字节,放到1位置int i;//4字节,2不是4的整数倍,放到4位置
};

最终指向8位置,是4的整数倍,故S2的大小为8字节
在这里插入图片描述

struct S3
{double d;//8字节,放到0位置处char c;//1字节,放到8位置处int i;//4字节,9不是4的整数倍,放到12位置处,最终指向16
};

因为最大对齐数为8,16为8的整数倍,所以结构体S3的大小就是16个字节

struct S4
{char c1;//1字节,放到0位置处struct S3 s3;//16字节,以8为对齐数,放到8位置,最后指向24位置处double d;//8字节,放到24位置,最终指向32位置
};

32是最大对齐数8的整数倍,所以结构体S4的大小就是32个字节

2、存在内存对齐的原因

在数据访问时,对齐的内存只需要一次访问,而不对齐的内存需要两次访问
结构体的内存对齐是拿空间来换取时间
我们可以将占用内存小的尽量集中在一起来节省空间

struct S1
{char c1;int i;char c2;
};
struct S2
{char c1;char c2;int i;
};

3、修改默认对齐数

#pragma
#include <stdio.h>
#pragma pack(1)//设置默认对⻬数为1
struct S
{char c1;//1字节,存到0位置int i;//4字节,默认对齐数为1小于4,存到1位置char c2;//1字节,存到5位置,指向6
};
#pragma pack()//取消设置的对⻬数,还原为默认
int main()
{printf("%d\n", sizeof(struct S));return 0;
}

在这里插入图片描述

三、结构体传参

struct S
{int data[100];int num;
};
struct S s = { {1,2,3,4}, 1000 };
void print(struct S* ps)
{printf("%d\n", ps->num);
}
int main()
{print(&s);return 0;
}

结构体传参的时候最好传一个地址,因为直接传一个结构体过去的话会造成时间和空间上不必要的开销,导致性能下降

四、结构体实现位段

位段的成员可以是int , unsigned int , signed int ,char类型的
位段不跨平台,可移植程序应该避免使用位段

struct S
{char a : 3;char b : 4;char c : 5;char d : 4;
};
struct S s = { 0 };
int main()
{s.a = 10;s.b = 12;s.c = 3;s.d = 4;printf("%d\n", s.a);printf("%d\n", s.b);printf("%d\n", s.c);printf("%d\n", s.d);}

在这里插入图片描述
在这里插入图片描述

这里的a存入了10,由于位段作用,被存入a的二进制数为010,用整数形式打印,第一位为0,为正数,以第一位补位到32位,即00000000 00000000 00000000 00000010,即为2

这里的b存入了12,由于位段作用,被存入b的二进制数为1100,用整数形式打印,第一位为1,为负数,补1到11111111 11111111 11111111 11111100,这是补码,然后取反加一为原码,即10000000 00000000 00000000 00000100,即为-4

这里的c存入了3,由于位段作用,被存入c的二进制数为00011,用整数形式打印,第一位为0,为正数,以第一位补位到32位,即00000000 00000000 00000000 00000011,即为3

这里的d存入了4,由于位段作用,被存入a的二进制数为0100,用整数形式打印,第一位为0,为正数,以第一位补位到32位,即00000000 00000000 00000000 00000100,即为4

但是它空间的开辟是这样的:
在这里插入图片描述
第一个数据:二进制的01100010,十六进制的0x62
第二个数据:二进制的00000011,十六进制的0x03
第三个数据:二进制的00000100,十六进制的0x04

在这里插入图片描述
可以看到我们的结构体中存放的数据是62 03 04 00,与上述分析相符

跟结构体相比,位段可以达到同样的效果,并且可以很好的节省空间,缺点是有跨平台的问题存在

因为地址的分配是以字节为单位的,位段下的某些数据是没有地址的,所以位段数据不能用指针来访问


今天的分享就到这了~
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/286457.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

从零自制docker-5-【USER Namespace NETWORK Namespace】

文章目录 USER Namespace代码NETWORK Namespace代码块 USER Namespace 即进程运行在一个新的namespace中&#xff0c;且该namespace中的User ID和Group IDA在该namespace内外可以不同&#xff0c;可以实现在namspace的用户是root但是对应到宿主机并不是root Cloneflags增加一…

3款免费甘特图制作工具的比较和选择指南

GanntProject GanttProject https://www.ganttproject.biz/ 是一款项目管理和调度应用&#xff0c;适用于 Windows、macOS 和 Linux。它易于使用&#xff0c;无需任何设置&#xff0c;适用于个人用户和小型团队。该应用提供任务层次结构和依存关系、里程碑、基准行、Gantt 图表…

AI论文速读 | 具有时间动态的路网语义增强表示学习

论文标题&#xff1a; Semantic-Enhanced Representation Learning for Road Networks with Temporal Dynamics 作者&#xff1a; Yile Chen&#xff08;陈亦乐&#xff09; ; Xiucheng Li&#xff08;李修成&#xff09;; Gao Cong&#xff08;丛高&#xff09; ; Zhifeng Ba…

卓健易控zj-v8.0设备智能控费系统

卓健易控zj-v8.0设备智能控费系统 详细可联系&#xff1a;19138173009 在现今医疗技术日新月异、突飞猛进的时代&#xff0c;我院服务患者的实力与日俱增。随着先进辅助检查设备的不断完善和引进&#xff0c;医生们如同得到了得力助手&#xff0c;能够为患者做出更加精确的诊断…

TCP重传机制详解——04FACK

文章目录 TCP重传机制详解——04FACK什么是FACKFACK的发展为什么要引入FACK实战抓包讲解开启FACK场景&#xff0c;且达到dup ACK门限值开启FACK场景&#xff0c;未达到dup ACK门限值 为什么要淘汰FACK总结REF TCP重传机制详解——04FACK 什么是FACK FACK的全称是forward ackn…

JVM(二)——垃圾回收

三、垃圾回收 1、如何判断对象可以回收 1&#xff09;引用计数法 定义&#xff1a; 在对象中添加一个引用计数器&#xff0c;每当有一个地方引用它时&#xff0c;计数器值就加一&#xff1b;当引用失效时&#xff0c;计数器值就减一&#xff1b;任何时刻计数器为零的对象就是…

Java面试篇:Redis使用场景问题(缓存穿透,缓存击穿,缓存雪崩,双写一致性,Redis持久化,数据过期策略,数据淘汰策略)

目录 1.缓存穿透解决方案一:缓存空数据解决方案二&#xff1a;布隆过滤器 2.缓存击穿解决方案一:互斥锁解决方案二:设置当前key逻辑过期 3.缓存雪崩1.给不同的Key的TTL添加随机值2.利用Redis集群提高服务的可用性3.给缓存业务添加降级限流策略4.给业务添加多级缓存 4.双写一致性…

MySQL substr函数使用详解

博主猫头虎的技术世界 &#x1f31f; 欢迎来到猫头虎的博客 — 探索技术的无限可能&#xff01; 专栏链接&#xff1a; &#x1f517; 精选专栏&#xff1a; 《面试题大全》 — 面试准备的宝典&#xff01;《IDEA开发秘籍》 — 提升你的IDEA技能&#xff01;《100天精通鸿蒙》 …

景联文科技上新高质量大模型训练数据!

在过去的一年中&#xff0c;人工智能领域呈现出了风起云涌的态势&#xff0c;其中模型架构、训练数据、多模态技术、超长上下文处理以及智能体发展等方面均取得了突飞猛进的发展。 在3月24日举办的2024全球开发者先锋大会的大模型前沿论坛上&#xff0c;上海人工智能实验室的领…

c语言--内存函数的使用(memcpy、memcmp、memset、memmove)

目录 一、memcpy()1.1声明1.2参数1.3返回值1.4memcpy的使用1.5memcpy模拟使用1.6注意 二、memmove()2.1声明2.2参数2.3返回值2.4使用2.5memmove&#xff08;&#xff09;模拟实现 三、memset3.1声明3.2参数3.3返回值3.4使用 四、memcmp()4.1声明4.2参数4.3返回值4.4使用 五、注…

MySQL-extra常见的额外信息

本文为大家介绍MySQL查看执行计划时&#xff0c;extra常见的额外信息 Using index 表示使用了覆盖索引&#xff0c;即通过索引树可以直接获取数据&#xff0c;不需要回表。 表结构: CREATE TABLE t1 (id int(11) NOT NULL AUTO_INCREMENT,name varchar(255) DEFAULT NULL,ag…

IP SSL证书注册流程

使用IP地址申请SSL证书&#xff0c;需要用公网IP地址申请&#xff0c;申请之前确保直接的IP地址可以开放80或者443端口两者选择1个就好&#xff0c;端口不需要一直开放&#xff0c;只要认证的几分钟内开放就可以了&#xff0c;然后IP地址根目录可以上传txt文件。 IP SSL证书认…

vue3+vite - 报错 import.meta.glob() can only accept string literals.(详细解决方案)

报错说明 在vue3+vite项目中,解决报错: [plugin:vite:import-analysis] import.meta.glob() can only accept string literals. 如果我们报错差不多,就可以完美搞定这个错误。 解决教程 这个错误,是因为

【STM32嵌入式系统设计与开发】——9Timer(定时器中断实验)

这里写目录标题 一、任务描述二、任务实施1、ActiveBeep工程文件夹创建2、函数编辑&#xff08;1&#xff09;主函数编辑&#xff08;2&#xff09;USART1初始化函数(usart1_init())&#xff08;3&#xff09;USART数据发送函数&#xff08; USART1_Send_Data&#xff08;&…

蓝桥杯学习笔记(贪心)

在很久很久以前&#xff0c;有几个部落居住在平原上&#xff0c;依次编号为1到n。第之个部落的人数为 t 有一年发生了灾荒&#xff0c;年轻的政治家小蓝想要说服所有部落一同应对灾荒&#xff0c;他能通过谈判来说服部落进行联台。 每次谈判&#xff0c;小蓝只能邀请两个部落参…

HarborCDN技术分析

一、介绍 简要介绍 ​​Harbor​​ 是由VMware公司开源的企业级的Docker Registry管理项目&#xff0c;它包括权限管理(RBAC)、LDAP、日志审核、管理界面、自我注册、镜像复制和中文支持等功能。Harbor 的所有组件都在 Dcoker 中部署&#xff0c;所以 Harbor 可使用 Docker C…

php反序列化刷题1

[SWPUCTF 2021 新生赛]ez_unserialize 查看源代码想到robots协议 看这个代码比较简单 直接让adminadmin passwdctf就行了 poc <?php class wllm {public $admin;public $passwd; }$p new wllm(); $p->admin "admin"; $p->passwd "ctf"; ec…

Redis中的事件

事件 概述 Redis服务器是一个事件驱动程序:服务器需要处理以下两类事件: 1.文件事件(file event):Redis服务器通过套接字与客户端(或者其他Redis服务器)进行连接&#xff0c;而文件事件就是服务器对套接字操作的抽象。服务器与客户端(或者其他服务器)的通信会产生相应的文件…

java串口接收和发送消息集成Springboot

写在前面&#xff1a;1、jdk我用的1.8.0_31 ,不能用太高的java版本。 2、&#xff08;1&#xff09;将rxtxParallel.dll和rxtxSerial.dll文件放到${JAVA_HOME}&#xff08;jdk目录,不是jre目录&#xff09;\jre\bin目录下 如&#xff1a; C:\Program Files\Java\jdk1.8.0_31\…

1升级powershell后才能安装WSL2--最后安装linux--Ubuntu 22.04.3 LTS

视频 https://www.bilibili.com/video/BV1uH4y1W7UX特殊开启–Hyper-V虚拟机 把一下代码保存到【a.bat】的执行文件中&#xff0c;进行Hyper-V虚拟机的安装开启【Windows 批处理文件 (.bat)】 pushd "%~dp0" dir /b %SystemRoot%\servicing\Packages\*Hyper-V*.mu…