JavaEE之网络初识(网络中的一些基本概念)详解

😽博主CSDN主页: 小源_😽

🖋️个人专栏: JavaEE

😀努力追逐大佬们的步伐~


目录

1. 前言

2. 网络中的一些基本概念

2.1 IP地址

2.2 端口号

2.3 网络协议

2.4 协议分层

2.5 封装

2.6 分用 (封装的逆向过程)

2.7 客户端 vs 服务器

2.8 请求, 响应

2.9 两台主机之间的网络通信流程


1. 前言

计算机进行网络的操作主要就是通过网卡这样的硬件设备, 在操作系统中被视为文件来进行管理的

网络/互联网是怎么来的呢? 这个东西一诞生, 就拯救了世界! 在美苏争霸一触即发之时, 双方都手握核武器, 这两个国家都希望自己的核弹头打出去之后, 直接把对方打的毫无还手之力

两者之间通过网络连接, 能否摧毁信号到发射井的通信网络就成了焦点问题

互联网就给出了一个答案: 通过足够的冗余, 两点之间有很多路线, 只要有一个没被摧毁, 信号就可以顺利传输

很多影响世界的发明, 都是先应用在军事领域, 后来才民用

本章重点

本文着重讲解了网络初始知识


2. 网络中的一些基本概念

2.1 IP地址

描述了一个设备在网络上的位置, 是一个 32 位, 4 个字节的整数

为了方便表示, 往往用 "点分十进制"  的方式: 把这 4 个字节分成 4 个部分. 每个部分 1 个字节, 取值范围为 0-255

在 Windows 命令运行框中, 输入 ipconfig 就可以看到自己的主机的 IP 地址

2.2 端口号

描述了一个主机上正在进行网络通信的应用程序, 是一个整数

一个主机上可能有很多程序在使用网络, 主机收到的网络数据得区分出需要交给哪个应用程序使用, 每个程序在进行网络通信的过程中都需要有一个端口号来进行区分 (可能是用户手动指定, 也可能是系统自动分配, 同一个主机上, 程序之间的端口号不能冲突)

我们需要注意: 一次网络通信中, 涉及到的 IP 和 端口 各有两个!

和买东西类似:

收件人地址 对应 目的 IP: 标识目的主机

收件人电话 对应 目的端口: 标识目的主机中该次通信接受数据的进程

发件人地址 对应 源 IP: 标识源主机

发件人电话 对应 源端口: 标识源主机中该次通信发送数据的进程

2.3 网络协议

就是一种通信过程中的约定, 是网络中非常核心的概念

发送方和接收方需要提前商量好数据的格式才能确保两者之间能够进行正确的沟通

因为通信双方的这两个计算机, 可能来自不同的厂商, 为了确保任意两个这样的计算机之间都能够正确的网络通信, 就要求这些计算机需要遵守相同的网络协议

是一种约定, 确保不同厂商生产的设备之间能够相互配合


2.4 协议分层

把一个复杂庞大的协议拆分成多个功能单一的协议并相互配合, 其中功能相似的在同一层, 上层协议会调用下层协议的功能, 下层协议给上层协议提供服务

只有相邻的层次之间可以进行沟通, 不能跨层次调用 (容易混乱)

协议分层还附带了一些好处:

1) 上层协议直接通过下层协议提供的 api 调用下层协议即可, 不需要了解下层协议的细节 (相当于下层协议把细节封装好了)

API(Application Programming Interface,应用程序编程接口)是一些预先定义的函数, 目的是提供应用程序与开发人员基于某软件或硬件得以访问一组例程的能力, 而又无需访问源码, 或理解内部工作机制的细节. ——百度百科

例如我们只要会说汉语, 男女老少就可以通过电话交流, 不需要了解电话的工作原理

2) 某一层的协议进行替换后, 对其他层没什么影响

如 汉语协议可以替换成英语协议, 无线电协议也可以替换成电话协议

OSI 七层网络协议, 这是大佬们最初设计的时候给出的方案, 但是实施的时候太麻烦了, 所以简化成了五层: TCP/IP 五层网络协议 (也有人叫 TCP/IP 四层模型, 不算物理层(纯硬件))

1. 应用层: 程序拿到数据后, 要用来干什么, 解决什么问题

2. 传输层: 负责关注 网络数据包 的起点和终点

3. 网络层: 负责关注起点和终点之间的路径规划  如: 上海 -> 南京 -> 无锡 -> 西安 (四个设备), 也可以是 两个点 (即两个设备)

4. 数据链路层: 负责两个相邻节点之间的传输方式  如: 上海到南京 用飞机空运, 南京到无锡, 用铁路运输......

5. 物理层: 通信过程中的基础设施  如: 公路, 铁路, 航线


2.5 封装

假想现在有一个场景: A 通过 QQ 给 B 发了一条 hello

以下是传输数据的流程 :

1. 应用层 (应用程序) QQ

QQ 从消息输入框获取用户输入的 hello, 把这个字符串构造成一个应用层数据包

(QQ 这样的程序内部设置了一个应用层协议, 应用层数据包就是按照这个协议来构造的)

约定格式如下(字符串拼接):

  

  

应用程序调用操作系统的 api, 把这个数据交给传输层的协议进行处理

2. 传输层: 把上述数据包作为一个整体, 再构造成一个传输层的数据包

传输层涉及的协议, 最主要的就是 TCP 和 UDP

此处假定使用的 UDP 进行通信, 就会构造一个 UDP 数据包

  

如图, 添加报头的过程就叫"封装", 其实就是字符串拼接

UDP 报头虽然不能保护数据, 但是能承载一些关键的用来转发数据的信息, 最重要的就是 源端口 和目的端口

拼好 UDP 数据包后, 就交给下层, 网络层

(交给下层指的是下层协议提供一组 api (函数), 上层调用这个 api, 把刚才构造好的数据通过参数传进去, 下层协议就可以处理这个数据了)

UDP 协议调用网络层的 api, 把数据交给网络层这里的协议进行处理

3. 网络层 : 把刚才传输层的 UDP 数据包作为一个整体, 拼上 IP 协议的报头, 构造成一个 IP 数据包

  

IP 报头中最关键的辅助转发的信息就是 源 IP 和 目的 IP

构造完 IP 数据包后, IP 协议调用数据链路层的 api, 把数据交给数据链路层这里的协议进行处理

4. 数据链路层:  在 IP 数据包上添加帧头和帧尾

5. 物理层

把以太网数据帧(二进制结构), 转换成光信号 (通过光的频谱进行编码)/电信号 (高低电平)/电磁波 

                                                           光纤                                            网线                      无线 wifi

经过上述一系列的操作, 数据终于从你的电脑上发出来了! (刚出家门) 


2.6 分用 (封装的逆向过程)

我们暂时不考虑中间过程, 假定数据包已经到 B 的网卡了. B 的处理过程就叫做分用

1. 物理层: B 的物理层收到 光信号/电信号/电磁波, 把这些物理信号转换成 数字信号 (二进制的 0 1 0 1) 

得到一个以太网的数据帧

2.数据链路层: 以太网

按照 以太网数据帧 的格式进行解析, 去除其中的载荷, 再交给上层协议

3. 网络层: IP 协议

按照 IP 协议的格式进行解析, 去除其中的载荷, 再交给上层协议

4. 传输层: UDP 协议

按照 UDP 协议格式进行解析, 去除其中的载荷, 再交给上层协议

5. 应用层: QQ 应用程序

按照 QQ 应用程序内部的应用层协议格式来解析数据

QQ 拿到这些信息之后, 就会在窗口给你弹出提示, 并且把消息/消息的发送者/发送时间 都显示到聊天窗口上


2.7 客户端 vs 服务器

在网络中, 主动发起通信的这一方称为 "客户端", 被动接受的这一方称为 "服务器"

同一个程序在不同的场景中, 可能是客户端, 也可能是服务器

2.8 请求, 响应

客户端给服务器发送的数据, 称为 "请求"(request)

服务器给客户端发送的数据, 称为 " 响应" (response)

客户端和服务器之间的交互, 也有很多种模式

1. "一问一答": 一个请求一个响应 (多用于网站开发)

2. "一问多答": 一个请求多个响应 (下载)

3. "多问一答": 多个请求一个响应 (上传)

4. "多问多答": 一个请求对应多个响应, 一个响应对应多个请求 (远程控制/远程桌面)

2.9 两台主机之间的网络通信流程

进行网络编程, 需要使用 传输层 提供的 API

传输层涉及到的两个协议之间的差异还挺大的, 他们的 api 也差别较大

TCP 的特点:

有连接

可靠传输

面向字节流

全双工

UDP 的特点

无连接

不可靠传输

面向数据报

全双工

有链接: 指的是抽象, 虚拟的连接, 本质上是通信双方各自保存对方的相关信息

可靠传输/不可靠传输: 发的数据到没到, 发送方可以清楚的感知到. 网络上的"异常情况"很多, 无论用什么样的软硬件技术手段, 无法保证 100% 把网络数据从 A 传输到 B, 此处是尽可能的完成数据传输, 虽然无法确保数据到达对方, 至少知道, 当时这个数据对方是不是收到了

面向字节流: 网络中传输数据的基本单位就是字节

面向数据报: 每次传输的基本单位是一个数据报 (由一系列的字节构成), 是一个特定的结构

全双工: 一个信道, 可以双向通信 (如日常见到的马路)

半双工: 一个通道, 只能单向通信 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/289461.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

韩顺平Java | C21网络编程

1 网络的相关概念 ip地址的组成:网络地址 主机地址 A类:0 ~ 2^7-1 0 ~ 127 B类:128 ~ 1282^6-1 128 ~ 191 C类:192 ~ 1922^5-1 192 ~ 223 D类:224 ~ 2242^4-1 224 ~ 239 E类:240 ~ 2402^3-1 240 ~ 2…

正弦实时数据库(SinRTDB)的使用(5)-历史数据查询(一)

前文已经将正弦实时数据库的使用进行了介绍,需要了解的可以先看下面的博客: 正弦实时数据库(SinRTDB)的安装 正弦实时数据库(SinRTDB)的使用(1)-使用数据发生器写入数据 正弦实时数据库(SinRTDB)的使用(2)-接入OPC DA的数据 正弦实时数据库(SinRTDB)…

20240321-1-AB测试面试题

AB测试面试题 1. 介绍一下ABTest的步骤 ABtest就是为了测试和验证模型/项目的效果,在app/pc端设计出多个版本,在同一时间维度下,分别用组成相同/相似的群组去随机访问这些版本,记录下群组的用户体验数据和业务数据,最…

力扣题库88题:合并两个有序数组(c语言)

解法: void merge(int* nums1, int nums1Size, int m, int* nums2, int nums2Size, int n) {int l1m-1;int l2n-1;int l3mn-1;while(l1>0&&l2>0){if(nums1[l1]>nums2[l2]){nums1[l3--]nums1[l1--];}else{nums1[l3--]nums2[l2--];}}while(l2>0)…

化工企业能源在线监测管理系统,智能节能助力生产

化工企业能源消耗量极大,其节能的空间也相对较大,所以需要控制能耗强度,保持更高的能源利用率。 化工企业能源消耗现状 1、能源管理方面 计量能源消耗时,计量器具存在问题,未能对能耗情况实施完全计量,有…

uniapp-Form示例(uviewPlus)

示例说明 Vue版本&#xff1a;vue3 组件&#xff1a;uviewPlus&#xff08;Form 表单 | uview-plus 3.0 - 全面兼容nvue的uni-app生态框架 - uni-app UI框架&#xff09; 说明&#xff1a;表单组建、表单验证、提交验证等&#xff1b; 截图&#xff1a; 示例代码 <templat…

阎淑萍:老母猪戴口罩还挺重视这张老脸啊,赵本山:我也相当副科级呀!

阎淑萍&#xff1a;老母猪戴口罩还挺重视这张老脸啊&#xff0c;赵本山&#xff1a;我也相当副科级呀&#xff01; ——小品《老拜年》&#xff08;上&#xff09;的台词 《老拜年》 是赵本山、阎淑萍、王中青、苏杰在《1993年中央电视台春节联欢晚会》上表演的小品&#xff0…

支付系列——从支付宝与银联的多年恩怨说起

备注&#xff1a;本文纯属个人观点&#xff0c;可能会有错误&#xff0c;但不接受反驳&#xff0c;哈哈&#xff01;同时&#xff0c;本文没写太多专业术语&#xff0c;只是科普和胡侃&#xff01; 2003年&#xff0c;马云刚创立淘宝网不久&#xff0c;为了能够提供更便捷的线上…

GEE实践应用|热岛效应(一)地表温度计算

目录 1.学习目标 2.理论介绍 3.从MODIS获得地表温度 4.从Landsat卫星获得地表温度 1.学习目标 ①了解如何使用GEE计算地表温度 2.理论介绍 城市化涉及用建筑物、道路和停车场等建筑结构取代自然景观。这种土地覆盖的改变也改变了土地表面的特性。这些变化的范围从表面反射和…

【JavaWeb】Day20.Vue组件库Element——常见组件

常见组件-对话框 Dialog 对话框&#xff1a;在保留当前页面状态的情况下&#xff0c;告知用户并承载相关操作。 首先打开官网&#xff08;Element - The worlds most popular Vue UI framework&#xff09;找到使用的对话框组件。 以自定义内容为例&#xff1a; 常见组件-表…

【实战】springboot整合swagger及knife4j

文章目录 前言技术积累何为swagger何为knife4jSwagger2与Swagger3注解的主要区别 springboot整合swagger及knife4j导入maven依赖yaml配置编写配置类编写实体和接口 效果展示 前言 对于一个有着资深后端搬砖经验的人来说&#xff0c;最重要的事情就是写API文档了。一个好的API文…

批量删除 rabbitmq中随机队列

批量删除 amq.gen–* 随机队列 操作错误产生了无效随机队列&#xff0c;需要批量删除 过滤列出指定amq.gen–队列 # 列出 指定 vhost/qq 以amq.gen开头的所有队列 rabbitmqctl list_queues --vhost / | grep ^amq.gen-# 批量删除队列 #由于list_queues会列出队列名称以及对应…

蓝桥杯真题Day40 倒计时19天 纯练题!

蓝桥杯第十三届省赛真题-统计子矩阵 题目描述 给定一个 N M 的矩阵 A&#xff0c;请你统计有多少个子矩阵 (最小 1 1&#xff0c;最大 N M) 满足子矩阵中所有数的和不超过给定的整数 K? 输入格式 第一行包含三个整数 N, M 和 K. 之后 N 行每行包含 M 个整数&#xf…

Python基本运算

1.逻辑运算符 第四行会有黄色的下划线是因为这个不是系统推荐的写法&#xff0c;系统推荐的是第五行的链式比较&#xff1b; 2.短路求值 对于and而言&#xff0c;左边的语句是false&#xff0c;那么整体一定是false,右边的表达式就不会进行计算&#xff1b; 对于or而言&…

Nginx 简介

文章目录 前言一、pandas是什么&#xff1f;二、使用步骤 1.引入库2.读入数据总结 一.Nginx简介 Nginx具有轻量级、高性能和低内存占用等特点&#xff0c;可以在多核处理器上有效地分配负载。它可以作为静态内容服务器&#xff0c;也可以作为反向代理服务器&#xff0c;将请…

【软考】UML中的图之状态图

目录 1. 说明2. 图示 1. 说明 1.状态图&#xff08;State Diagram&#xff09;展现了一个状态机。2.由状态、转换、事件和活动组成。3.关注系统的动态视图。4.对于接口、类和协作的行为建模尤为重要。5.强调对象行为的事件顺序。6.通常包括简单状态和组合状态、转换&#xff0…

基于ssm的bbs论坛系统

开发环境&#xff1a;idea 前端&#xff1a;JQueryBootstraplayui后端&#xff1a;SpringSpringMVCMybatis数据库&#xff1a;mysqlredis 基于ssm的bbs论坛系统&#xff0c;功能有论坛、导读、动态、排行榜以及后台管理系统等等 话不多说&#xff0c;看图&#xff01;&#x…

13 完全分布式搭建-集群配置

1.集群部署规划 NameNode 和 SecondaryNameNode 不要安装在同一台服务器 ResourceManager 也很消耗内存&#xff0c;不要和 NameNode、SecondaryNameNode 配置在 同一台机器上。 在文章中与教材上有区别&#xff0c;在理论课上已讲解。 masterslave01slave02HDFS NameNode D…

初入C++

C 编译时的查找&#xff1a; 先到函数局部域里查找到全局域找 局部域和全局域会改变生命周期。 命名空间域不会影响变量的生命周期。 默认情况下不会到命名空间域去找。(命名空间域内的变量的生命周期是全局的&#xff0c;及不会出命名空间就销毁) 在不同的作用域可以定义同…

mysql主从复制、读写分离

一、主从复制架构和原理 1.1 主从复制类型 基于SQL语句的复制(STATEMENT默认) 基于行的复制(ROW&#xff09; 混合类型的复制(MIXED) 1.2主从复制的工作流程及原理 1.2.1 工作流程 ① 当数据来的时候&#xff0c;主服务器把操作记录二进制日志中&#xff0c;存储放入磁盘 ②…