一、前言
多比特一般为数据,其在跨时钟域传输的过程中有多种处理方式,比如DMUX,异步FIFO,双口RAM,握手处理。本文介绍通过DMUX的方式传输多比特信号。
二、DMUX同步跨时钟域数据
dmux表示数据分配器,该方法适合带数据有效标志信号的多bit数据做跨时钟域传输。其典型结构如下:
慢时钟域到快时钟域
快时钟域到慢时钟域只要将红框中换成单bit快时钟域到慢时钟域处理单元即可。
DMUX遵循的原则就是,数据不同步只对控制信号同步,这点其实和异步fifo里的思路一样,只不多异步fifo中的控制信号是多比特的格雷码,而这个场景下的控制信号是data_valid。继续观察结构可以发现,DMUX是将单bit控制信号同步之后将其最为mux的选择信号。因此使用这个结构需要满足一些要求:
1.数据和使能信号在源时钟域为同步到来的信号;
2.在目的时钟域对数据完成采样前,数据信号不能跳变;
如果不满足以上的要求,那么就可能造成数据漏同步、错同步等问题。
三、DMUX Verilog代码
3.1 慢时钟域数据到快时钟域
module mult_bit_slow_to_fast_dmux #(parameter DATAWIDTH = 8)(input rst_n, input clk_slow,input [DATAWIDTH-1:0] data_slow,input data_valid_slow,input clk_fast,output reg [DATAWIDTH-1:0] data_fast,output reg data_valid_fast);//signal valid slow to fast cdcreg data_valid_slow_reg;always@(posedge clk_slow or negedge rst_n)beginif(!rst_n)data_valid_slow_reg <= 1'b0;elsedata_valid_slow_reg <= data_valid_slow; endreg data_valid_slow2fast_reg0,data_valid_slow2fast_reg1;always@(posedge clk_fast or negedge rst_n)beginif(!rst_n)begindata_valid_slow2fast_reg0 <= 1'b0;data_valid_slow2fast_reg0 <= 1'b0;endelsebegindata_valid_slow2fast_reg0 <= data_valid_slow_reg ; data_valid_slow2fast_reg1 <= data_valid_slow2fast_reg0 ;endendalways@(posedge clk_fast or negedge rst_n)beginif(!rst_n)data_valid_fast <= 1'b0;elsedata_valid_fast <= data_valid_slow2fast_reg1 ;end//data slow to fast cdcreg [DATAWIDTH-1:0] data_slow_reg,always@(posedge clk_slow or negedge rst_n)beginif(!rst_n)data_slow_reg <= 0;elsedata_slow_reg <= data_slow ;endalways@(posedge clk_fast or negedge rst_n)beginif(!rst_n)data_fast<= 0;else if(data_valid_slow2fast_reg1 == 1'b1)data_fast <= data_slow_reg ;endendmodule
3.2 快时钟域数据到慢时钟域
module mult_bit_fast_to_slow_dmux #(parameter DATAWIDTH = 8)(input rst_n, input clk_fast,input [DATAWIDTH-1:0] data_fast,input data_valid_fast,input clk_slow,output reg [DATAWIDTH-1:0] data_slow,output reg data_valid_slow);//signal valid fast to slow cdcreg data_valid_fast_reg;always@(posedge clk_fast or negedge rst_n)beginif(!rst_n)data_valid_fast_reg <= 1'b0;else if(data_valid_fast == 1'b1)data_valid_fast_reg <= ~data_valid_fast_reg ; endreg data_valid_fast2slow_reg0,data_valid_fast2slow_reg1;always@(posedge clk_slow or negedge rst_n)beginif(!rst_n)begindata_valid_fast2slow_reg0 <= 1'b0;data_valid_fast2slow_reg1 <= 1'b0;endelsebegindata_valid_fast2slow_reg0<= data_valid_fast_reg ; data_valid_fast2slow_reg1<= data_valid_fast2slow_reg0;endendreg data_valid_fast2slow_reg2always@(posedge clk_slow or negedge rst_n)beginif(!rst_n)data_valid_fast2slow_reg2 <= 1'b0;elsedata_valid_fast2slow_reg2 <= data_valid_fast2slow_reg1;endassign data_valid_slow_ready = data_valid_fast2slow_reg1 ^ data_valid_fast2slow_reg2 ;always@(posedge clk_slow or negedge rst_n)beginif(!rst_n)data_valid_slow<= 0;else data_valid_slow<= data_valid_slow_ready ;end//data fast to slow cdcreg [DATAWIDTH-1:0] data_fast_reg,always@(posedge clk_fast or negedge rst_n)beginif(!rst_n)data_fast_reg<= 0;elsedata_fast_reg<= data_fast;endalways@(posedge clk_slow or negedge rst_n)beginif(!rst_n)data_slow <= 0;else if(data_valid_slow_ready == 1'b1)data_slow <= data_fast_reg ;endendmodule