【JVM】关于JVM垃圾回收

文章目录

  • 🌴死亡对象的判断算法
    • 🌸引用计数算法
    • 🌸可达性分析算法
  • 🌳垃圾回收算法
    • 🌸标记-清除算法
    • 🌸复制算法
    • 🌸标记-整理算法
    • 🌸分代算法
    • 🌸哪些对象会进入新生代?哪些对象会进入老年代?
  • 🎈经典面试题
  • ⭕总结

Java运行时内存的各个区域。对于程序计数器、虚拟机栈、本地方法栈这三部分区域而言,其生命周期与相关线程有关,随线程而生,随线程而灭。

并且这三个区域的内存分配与回收具有确定性,因为当方法结束或者线程结束时,内存就自然跟着线程回收了。因此我们本节课所讲的有关内存分配和回收关注的为Java堆与方法区这两个区域。

Java堆中存放着几乎所有的对象实例,垃圾回收器在对堆进行垃圾回收前,首先要判断这些对象哪些还存活,哪些已经"死去"。判断对象是否已"死"有如下几种算法

在 Java 中,所有的对象都是要存在内存中的(也可以说内存中存储的是一个个对象),因此我们将内存回收,也可以叫做死亡对象的回收

🌴死亡对象的判断算法

🌸引用计数算法

引用计数描述的算法为:
给对象增加一个引用计数器,每当有一个地方引用它时,计数器就+1;当引用失效时,计数器就-1;任何时刻计数器为0的对象就是不能再被使用的,即对象已"死"。

引用计数法实现简单,判定效率也比较高,在大部分情况下都是一个不错的算法。比如Python语言就采用引用计数法进行内存管理。

但是,在主流的JVM中没有选用引用计数法来管理内存,最主要的原因就是引用计数法无法解决对象的循环引用问题

对象的循环引用是指当两个或多个对象互相持有对方的引用(通常是通过智能指针),导致它们的引用计数永远不会降为零,从而导致内存泄漏的情况。

🌸可达性分析算法

在上面我们讲了,Java并不采用引用计数法来判断对象是否已"死",而采用"可达性分析"来判断对象是否存活(同样采用此法的还有C#、Lisp-最早的一门采用动态内存分配的语言)。

此算法的核心思想为 : 通过一系列称为"GC Roots"的对象作为起始点,从这些节点开始向下搜索,搜索走过的路径称之为"引用链",当一个对象到GC Roots没有任何的引用链相连时(从GC Roots到这个对象不可达)时,证明此对象是不可用的。以下图为例
在这里插入图片描述
对象Object5-Object7之间虽然彼此还有关联,但是它们到GC Roots是不可达的,因此他们会被判定为可回收对象。

在Java语言中,可作为GC Roots的对象包含下面几种:

  1. 虚拟机栈(栈帧中的本地变量表)中引用的对象;
  2. 方法区中类静态属性引用的对象;
  3. 方法区中常量引用的对象;
  4. 本地方法栈中 JNI(Native方法)引用的对象。

从上面我们可以看出“引用”的功能,除了最早我们使用它(引用)来查找对象,现在我们还可以使用“引用”来判断死亡对象了。

所以在 JDK1.2 时,Java 对引用的概念做了扩充,将引用分为强引用(Strong Reference)、软引用(Soft Reference)、弱引用(Weak Reference)和虚引用(Phantom Reference)四种,这四种引用的强度依次递减。

  1. 强引用 : 强引用指的是在程序代码之中普遍存在的,类似于"Object obj = new
    Object()"这类的引用,只要强引用还存在,垃圾回收器永远不会回收掉被引用的对象实例。
  2. 软引用 :
    软引用是用来描述一些还有用但是不是必须的对象。对于软引用关联着的对象,在系统将要发生内存溢出之前,会把这些对象列入回收范围之中进行第二次回收。如果这次回收还是没有足够的内存,才会抛出内存溢出异常。在JDK1.2之后,提供了SoftReference类来实现软引用。
  3. 弱引用 :
    弱引用也是用来描述非必需对象的。但是它的强度要弱于软引用。被弱引用关联的对象只能生存到下一次垃圾回收发生之前。当垃圾回收器开始进行工作时,无论当前内容是否够用,都会回收掉只被弱引用关联的对象。在JDK1.2之后提供了WeakReference类来实现
    弱引用。
  4. 虚引用 :
    虚引用也被称为幽灵引用或者幻影引用,它是最弱的一种引用关系。一个对象是否有虚引用的存在,完全不会对其生存时间构成影响,也无法通过虚引用来取得一个对象实例。为一个对象设置虚引用的唯一目的就是能在这个对象被收集器回收时收到一个系统通知。在JDK1.2之后,提供了PhantomReference类来实现虚引用。

🌳垃圾回收算法

通过上面的判断算法,我们可以将死亡对象标记出来。标记出来之后我们就可以进行垃圾回收操作了,接下来我们来看下垃圾回收机器使用的几种算法

🌸标记-清除算法

"标记-清除"算法是最基础的收集算法。

算法分为"标记"和"清除"两个阶段 : 首先标记出所有需要回收的对象,在标记完成后统一回收所有被标记的对象(标记过程见3.1.2章节)。

后续的收集算法都是基于这种思路并对其不足加以改进而已。

"标记-清除"算法的不足主要有两个 :

  1. 效率问题 : 标记和清除这两个过程的效率都不高
  2. 空间问题 : 标记清除后会产生大量不连续的内存碎片,空间碎片太多可能会导致以后在程序运行中

需要分配较大对象时,无法找到足够连续内存而不得不提前触发另一次垃圾回收
在这里插入图片描述

🌸复制算法

"复制"算法是为了解决"标记-清理"的效率问题。它将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。

当这块内存需要进行垃圾回收时,会将此区域还存活着的对象复制到另一块上面,然后再把已经使用过的内存区域一次清理掉。这样做的好处是每次都是对整个半区进行内存回收,内存分配时也就不需要考虑内存碎片等复杂情况,只需要移动堆顶指针,按顺序分配即可。

此算法实现简单,运行高效。算法的执行流程如下图 :
在这里插入图片描述

现在的商用虚拟机(包括HotSpot都是采用这种收集算法来回收新生代)

新生代中98%的对象都是"朝生夕死"的,所以并不需要按照1 : 1的比例来划分内存空间,而是将内存(新生代内存)分为一块较大的Eden(伊甸园)空间和两块较小的Survivor(幸存者)空间,每次使用Eden和其中一块Survivor(两个Survivor区域一个称为From区,另一个称为To区域)。

当回收时,将Eden和Survivor中还存活的对象一次性复制到另一块Survivor空间上,最后清理掉Eden和刚才用过的Survivor空间。

当Survivor空间不够用时,需要依赖其他内存(老年代)进行分配担保。

HotSpot默认Eden与Survivor的大小比例是8 : 1,也就是说Eden:Survivor From : Survivor To = 8:1:1。

所以每次新生代可用内存空间为整个新生代容量的90%,而剩下的10%用来存放回收后存活的对象

HotSpot实现的复制算法流程如下:

  1. 当Eden区满的时候,会触发第一次Minor gc,把还活着的对象拷贝到Survivor From区;当 Eden区再次触发Minor
    gc的时候,会扫描Eden区和From区域,对两个区域进行垃圾回收,经过这次回收后还存活的对象,则直接复制到To区域,并将Eden和From区域清空。
  2. 当后续Eden又发生Minor gc的时候,会对Eden和To区域进行垃圾回收,存活的对象复制到
    From区域,并将Eden和To区域清空。
  3. 部分对象会在From和To区域中复制来复制去,如此交换15次(由JVM参数
    MaxTenuringThreshold决定,这个参数默认是15),最终如果还是存活,就存入到老年代

在这里插入图片描述

🌸标记-整理算法

复制收集算法在对象存活率较高时会进行比较多的复制操作,效率会变低。因此在老年代一般不能使用复制算法。

针对老年代的特点,提出了一种称之为"标记-整理算法"。标记过程仍与"标记-清除"过程一致,但后续步骤不是直接对可回收对象进行清理,而是让所有存活对象都向一端移动,然后直接清理掉端边界以外的内存。(类似于链表删除中间元素)
流程图如下:
在这里插入图片描述

🌸分代算法

分代算法和上面讲的 3 种算法不同,分代算法是通过区域划分,实现不同区域和不同的垃圾回收策略,从而实现更好的垃圾回收。这就好比中国的一国两制方针一样,对于不同的情况和地域设置更符合当地的规则,从而实现更好的管理,这就是分代算法的设计思想。

当前 JVM 垃圾收集都采用的是"分代收集(Generational Collection)"算法,这个算法并没有新思想,只是根据对象存活周期的不同将内存划分为几块。

一般是把Java堆分为新生代和老年代。在新生代中,每次垃圾回收都有大批对象死去,只有少量存活,因此我们采用复制算法;而老年代中对象存活率高、没有额外空间对它进行分配担保,就必须采用"标记-清理"或者"标记-整理"算法

🌸哪些对象会进入新生代?哪些对象会进入老年代?

新生代:一般创建的对象都会进入新生代;

老年代:大对象和经历了 N 次(一般情况默认是 15 次)垃圾回收依然存活下来的对象会从新生代移动到老年代

🎈经典面试题

请问了解Minor GC和Full GC么,这两种GC有什么不一样吗?

  1. Minor GC又称为新生代GC : 指的是发生在新生代的垃圾收集。因为Java对象大多都具备朝生夕灭的特性,因此Minor
    GC(采用复制算法)非常频繁,一般回收速度也比较快。
  2. Full GC 又称为 老年代GC或者Major GC : 指发生在老年代的垃圾收集。出现了Major
    GC,经常会伴随至少一次的Minor GC(并非绝对,在Parallel Scavenge收集器中就有直接进行Full
    GC的策略选择过程)。Major GC的速度一般会比Minor GC慢10倍以上

⭕总结

感谢大家的阅读,希望得到大家的批评指正,和大家一起进步,与君共勉!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/292601.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

算法学习——LeetCode力扣动态规划篇8

算法学习——LeetCode力扣动态规划篇8 300. 最长递增子序列 300. 最长递增子序列 - 力扣(LeetCode) 描述 给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。 子序列 是由数组派生而来的序列,删除(或不删…

nuxt学习

一、遇到的问题 1、nuxt初始化失败问题解决方案 使用npm和pnpm初始化都失败 原因:主机连不上DNS服务器 解决方案 Step1: 打开文件夹 Windows:路径:C:\Windows\System32\drivers\etc Mac: 路径:/etc/hosts Step2: 使用记事本方式打开 …

游戏领域AI智能视频剪辑解决方案

游戏行业作为文化创意产业的重要组成部分,其发展和创新速度令人瞩目。然而,随着游戏内容的日益丰富和直播文化的兴起,传统的视频剪辑方式已难以满足玩家和观众日益增长的需求。美摄科技,凭借其在AI智能视频剪辑领域的深厚积累和创…

【JavaSE】内部类

目录 前言 内部类 内部类的种类 1. 实例内部类 2 静态内部类 3 匿名内部类 4 局部内部类 结语 前言 内部类是我们前面学习遗留下来的知识点,在学完接口后才能更好的理解它,因此等到现在才讲 内部类 在Java中,我们可以将A类定义在B…

人工智能(pytorch)搭建模型25-基于pytorch搭建FPN特征金字塔网络的应用场景,模型结构介绍

大家好,我是微学AI,今天给大家介绍一下人工智能(pytorch)搭建模型25-基于pytorch搭建FPN特征金字塔网络的应用场景,模型结构介绍。特征金字塔网络(FPN)是一种深度学习模型结构,主要应用于目标检测任务中&am…

什么是 SSL 证书?

SSL 证书的介绍 SSL(Secure Sockets Layer)证书是一种由数字证书颁发机构(CA)签发的加密证书,用于在 Web 浏览器和服务器之间建立安全连接。SSL 证书能够确保网站和应用程序的数据传输过程中不被窃听、篡改或伪造&…

从0配置React

在本地安装和配置React项目,您可以使用create-react-app这个官方推荐的脚手架工具。以下是安装React的步骤,包括安装Node.js、使用create-react-app创建React应用,以及启动开发服务器。 下载安装node.js运行以下命令,验证Node.js…

系列学习前端之第 7 章:一文掌握 AJAX

1、AJAX 简介 AJAX 全称为 Asynchronous JavaScript And XML(中文名:阿贾克斯),就是异步的 JS 和 XML。AJAX 不是新的编程语言,而是一种将现有的标准组合在一起使用的新方式。AJAX 可以在浏览器中向服务器发送异步请求…

Wasm初上手

总之也是为了扩宽技术面吧。。。我也不知道为什么就想试试了,就酱。 参考阅读:极客时间《WebAssembly入门课》 安装wasm的编译器Emscripten。Emscripten 是一个“源到源”语言编译器工具集,这个工具集可以将 C/C 代码编译成对应 JavaScript 代…

AI学习-Pandas数据处理分析

文章目录 1. Pandas概述2. Series用法2.1 Series的创建2.2 Series的取值2.3 Series的相关方法 3. DataFrame用法3.1 DataFrame创建3.2 DataFrame取值3.3 DataFrame相关方法 1. Pandas概述 ​ Pandas 是一个开源的数据分析处理库,它应用在数据科学、统计分析、机器学…

手机短信验证码自动转发到服务器

今天写一个自动化处理程序,需要验证码登录,怎么样把手机收到的短信自动转发到服务器接口呢? 利用ios手机快捷指令的功能 打开快捷指令点击中间自动化点击右上角号选择信息信息包含选取,输入验证码选择立即执行点击下一步按下图配…

程序汪接的4万智慧餐饮项目

本文章来自程序汪背后的私活小团队,开发智慧餐厅的小程序 由于程序汪太忙于是把这个项目让一个靠谱粉丝开发了,当然开发质量和进度我会跟踪,具体分析如下 B站【我是程序汪】 老程序员接了一个4万的智慧餐饮项目,开发周期60天 小程…

Docker中常见的命令行

1 docker的全部命令 docker attach #连接到正在运行中的容器 docker build #使用 Dockerfile 创建镜像 docker builder #管理builds docker builder prune #清除build缓存 docker checkpoint #管理checkpoints docker checkpoint create #从正在运行的容器创建检…

LATTICE进阶篇DDR2--(2)详解IPUG35---基于官方例程

前言 本章主要讲述根据《DDR & DDR2 SDRAM Controller IP Cores User’s Guide 》数据手册,配合ddr2的demo仿真,学习DDR2的IP核时序控制。 器件:Lattice ECP3 环境:Win10 Diamond3.13 ModelSim SE-64 10.5 一、下载DDR2…

【链表专题】(2. 两数相加 23. 合并 K 个升序链表 25. K 个一组翻转链表)

文章目录 2. 两数相加23. 合并 K 个升序链表25. K 个一组翻转链表 2. 两数相加 题目链接: leetcode2. 两数相加 class Solution {public ListNode addTwoNumbers(ListNode l1, ListNode l2) {ListNode cur1 l1,cur2 l2;ListNode newHead new ListNode(0);ListNode prev ne…

STM32的简介

内存 一般MCU包含的存储空间有FLASH和RAM,(RAM和flash又有片上和片外的区别,片上表示mcu自带的,已经封装在MCU内部的,片外表示外挂的,当项目中需要做一些复杂的应用,会存在资源不足的情况,这时…

MIT最新研究成果 机器人能够从错误中纠偏 无需编程介入和重复演示

目前科学家们正在努力让机器人变得更加智能,教会他们完成诸如擦拭桌面,端盘子等复杂技能。以往机器人要在非结构化环境执行这样的任务,需要依靠固定编程进行,缺乏场景通用性,而现在机器人的学习过程主要在于模仿&#…

LeetCode 双指针专题

11.盛最多水的容器 给定一个长度为 n 的整数数组 height 。有 n 条垂线,第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。 找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。 返回容器可以储存的最大水量。 说明:你不…

数据结构——lesson13排序之计数排序

💞💞 前言 hello hello~ ,这里是大耳朵土土垚~💖💖 ,欢迎大家点赞🥳🥳关注💥💥收藏🌹🌹🌹 💥个人主页&#x…

基于单片机锂电池电量检测数码管显示系统设计

**单片机设计介绍,基于单片机锂电池电量检测数码管显示系统设计 文章目录 一 概要二、功能设计设计思路 三、 软件设计原理图 五、 程序六、 文章目录 一 概要 基于单片机锂电池电量检测数码管显示系统设计的主要目标是实时、准确地检测锂电池的电量,并…