RT-DETR融合YOLOv12中的R-ELAN结构


RT-DETR使用教程: RT-DETR使用教程

RT-DETR改进汇总贴:RT-DETR更新汇总贴


《YOLOv12: Attention-Centric Real-Time Object Detectors》

一、 模块介绍

        论文链接:https://arxiv.org/abs/2502.12524

        代码链接:https://gitcode.com/gh_mirrors/yo/yolov12

论文速览:

       长期以来,增强YOLO框架的网络架构一直至关重要,但一直专注于基于cnn的改进,尽管注意力机制在建模能力方面已被证明具有优越性。这是因为基于注意力的模型无法匹配基于cnn的模型的速度。本文提出了一种以注意力为中心的YOLO框架,即YOLOv12,与之前基于cnn的YOLO框架的速度相匹配,同时利用了注意力机制的性能优势。YOLOv12在精度和速度方面超越了所有流行的实时目标检测器。例如,YOLOv12-N在T4 GPU上以1.64ms的推理延迟实现了40.6% mAP,以相当的速度超过了高级的YOLOv10-N / YOLOv11-N 2.1%/1.2% mAP。这种优势可以扩展到其他模型规模。YOLOv12还超越了改善DETR的端到端实时检测器,如RT-DETR /RT-DETRv2: YOLOv12- s比RT-DETR- r18 / RT-DETRv2-r18运行更快42%,仅使用36%的计算和45%的参数。更多的比较见图1。

总结:本文将其中的R-ELAN思想融入其他模块。


二、二创融合模块

2.1 相关二创模块及所需参数

        该模块可如图加入到RepNCSPELAN4、RepC3自研等模块中,代码见群文件,所需参数如下。

RepNCSPELAN4-变式模块 所需参数:(c1, c2, c3, c4, n)

CCRI及变式模块 所需参数:(c1, c2, k, n, lightconv, shortcut, scale, e, act)

RepC4及变式模块 所需参数:(c1, c2, n, e)

        其中,RepNCSPELAN4模块的代码如下:

class RepNCSPELAN4_R_ELAN(nn.Module):"""CSP-ELAN."""def __init__(self, c1, c2, c3, c4, n=1):"""Initializes CSP-ELAN layer with specified channel sizes, repetitions, and convolutions."""super().__init__()self.c = c3 // 2self.cv1 = Conv(c1, self.c, 1, 1)self.cv2 = nn.Sequential(RepCSP(c3 // 2, c4, n), Conv(c4, c4, 3, 1))self.cv3 = nn.Sequential(RepCSP(c4, c4, n), Conv(c4, c4, 3, 1))self.cv4 = Conv(self.c + (2 * c4), c2, 1, 1)def forward(self, x):"""Forward pass through RepNCSPELAN4 layer."""y = [self.cv1(x)]y.extend((m(y[-1])) for m in [self.cv2, self.cv3])return self.cv4(torch.cat(y, 1))def forward_split(self, x):"""Forward pass using split() instead of chunk()."""y = list(self.cv1(x).split((self.c, self.c), 1))y.extend(m(y[-1]) for m in [self.cv2, self.cv3])return self.cv4(torch.cat(y, 1))

2.2 更改yaml文件 (以自研模型加入为例)

yam文件解读:YOLO系列 “.yaml“文件解读_yolo yaml文件-CSDN博客

       打开更改ultralytics/cfg/models/rt-detr路径下的rtdetr-l.yaml文件,替换原有模块。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr
# ⭐⭐Powered by https://blog.csdn.net/StopAndGoyyy,  技术指导QQ:2668825911⭐⭐# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'# [depth, width, max_channels]l: [1.00, 1.00, 512]
#  n: [ 0.33, 0.25, 1024 ]
#  s: [ 0.33, 0.50, 1024 ]
#  m: [ 0.67, 0.75, 768 ]
#  l: [ 1.00, 1.00, 512 ]
#  x: [ 1.00, 1.25, 512 ]
# ⭐⭐Powered by https://blog.csdn.net/StopAndGoyyy,  技术指导QQ:2668825911⭐⭐backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 2, CCRI, [128, 5, True, False]]- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8- [-1, 4, CCRI, [256, 3, True, True]]- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16- [-1, 4, RepNCSPELAN4_R_ELAN, [512, 512, 256, 1]]- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32- [-1, 2, CCRI, [1024, 3, True, False]]head:- [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 9 input_proj.2- [-1, 1, AIFI, [1024, 8]]- [-1, 1, Conv, [256, 1, 1]] # 11, Y5, lateral_convs.0- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [6, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 13 input_proj.1- [[-2, -1], 1, Concat, [1]]- [-1, 2, RepC4, [256]] # 15, fpn_blocks.0- [-1, 1, Conv, [256, 1, 1]] # 16, Y4, lateral_convs.1- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [4, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 18 input_proj.0- [[-2, -1], 1, Concat, [1]] # cat backbone P4- [-1, 2, RepC4, [256]] # X3 (20), fpn_blocks.1- [-1, 1, Conv, [256, 3, 2]] # 22, downsample_convs.0- [[-1, 16], 1, Concat, [1]] # cat Y4- [-1, 2, RepC4, [256]] # F4 (23), pan_blocks.0- [-1, 1, Conv, [256, 3, 2]] # 24, downsample_convs.1- [[-1, 11], 1, Concat, [1]] # cat Y5- [-1, 2, RepC4, [256]] # F5 (26), pan_blocks.1- [[20, 23, 26], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)
# ⭐⭐Powered by https://blog.csdn.net/StopAndGoyyy,  技术指导QQ:2668825911⭐⭐

 2.2 修改train.py文件

       创建Train_RT脚本用于训练。

from ultralytics.models import RTDETR
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'if __name__ == '__main__':model = RTDETR(model='ultralytics/cfg/models/rt-detr/rtdetr-l.yaml')# model.load('yolov8n.pt')model.train(data='./data.yaml', epochs=2, batch=1, device='0', imgsz=640, workers=2, cache=False,amp=True, mosaic=False, project='runs/train', name='exp')

         在train.py脚本中填入修改好的yaml路径,运行即可训。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/29411.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

“深入浅出”系列之Linux篇:(13)socket编程实战+TCP粘包解决方案

从日常使用的APP,到背后支撑的各类服务器,网络通信无处不在,而socket作为实现网络通信的关键技术,更是开发者们必须掌握的核心知识。但在socket编程的道路上,TCP粘包问题宛如一只拦路虎,让无数开发者头疼不…

【计算机操作系统】操作系统的功能和目标

1、操作系统的功能和目标---作为系统资源的管理者 作为系统资源的管理者提供的功能: (1)处理机管理 (2)存储器管理 (3)文件管理 (4)设备管理 作为系统资源的管理者…

“深入浅出”系列之Linux篇:(10)基于C++实现分布式网络通信RPC框架

分布式网络通信rpc框架 项目是分布式网络通信rpc框架, 文中提到单机服务器的缺点: 硬件资源的限制影响并发:受限于硬件资源,聊天服务器承受的用户的并发有限 模块的编译部署难:任何模块小的修改,都导致整…

Aws batch task 无法拉取ECR 镜像unable to pull secrets or registry auth 问题排查

AWS batch task使用了自定义镜像,在提作业后出现错误 具体错误是ResourceInitializationError: unable to pull secrets or registry auth: The task cannot pull registry auth from Amazon ECR: There is a connection issue between the task and Amazon ECR. C…

机器学习之无监督学习

无监督学习(Unsupervised Learning)是机器学习的一个重要分支,其特点是在训练过程中不使用标签数据。与有监督学习不同,无监督学习的目标是从未标记的数据中发现隐藏的结构、模式或关系。无监督学习广泛应用于聚类、降维、异常检测…

自然语言处理:朴素贝叶斯

介绍 大家好,博主又来和大家分享自然语言处理领域的知识了。按照博主的分享规划,本次分享的核心主题本应是自然语言处理中的文本分类。然而,在对分享内容进行细致梳理时,我察觉到其中包含几个至关重要的知识点,即朴素…

HTML label 标签使用

点击 <label> 标签通常会使与之关联的表单控件获得焦点或被激活。 通过正确使用 <label> 标签&#xff0c;可以使表单更加友好和易于使用&#xff0c;同时提高整体的可访问性。 基本用法 <label> 标签通过 for 属性与 id 为 username 的 <input> 元素…

Ubuntu20.04双系统安装及软件安装(五):VSCode

Ubuntu20.04双系统安装及软件安装&#xff08;五&#xff09;&#xff1a;VSCode 打开VScode官网&#xff0c;点击中间左侧的deb文件下载&#xff1a; 系统会弹出下载框&#xff0c;确定即可。 在文件夹的**“下载”目录**&#xff0c;可看到下载的安装包&#xff0c;在该目录下…

SparkSQL全之RDD、DF、DS ,UDF、架构、资源划分、sql执行计划、调优......

1 SparkSQL概述 1.1 sparksql简介 Shark是专门针对于spark的构建大规模数据仓库系统的一个框架Shark与Hive兼容、同时也依赖于Spark版本Hivesql底层把sql解析成了mapreduce程序&#xff0c;Shark是把sql语句解析成了Spark任务随着性能优化的上限&#xff0c;以及集成SQL的一些…

Linux总结

1 用户与用户组管理 1.1 用户与用户组 //linux用户和用户组 Linux系统是一个多用户多任务的分时操作系统 使用系统资源的用户需要账号进入系统 账号是用户在系统上的标识&#xff0c;系统根据该标识分配不同的权限和资源 一个账号包含用户和用户组 //用户分类 超级管理员 UID…

【AI深度学习网络】卷积神经网络(CNN)入门指南:从生物启发的原理到现代架构演进

深度神经网络系列文章 【AI深度学习网络】卷积神经网络&#xff08;CNN&#xff09;入门指南&#xff1a;从生物启发的原理到现代架构演进【AI实践】基于TensorFlow/Keras的CNN&#xff08;卷积神经网络&#xff09;简单实现&#xff1a;手写数字识别的工程实践 引言 在当今…

Qt之QGraphicsView图像操作

QGraphicsView图像操作:旋转、放大、缩小、移动、图层切换 1 摘要 GraphicsView框架结构主要包含三个主要的类QGraphicsScene(场景)、QGraphicsView(视图)、QGraphicsItem(图元)。QGraphicsScene本身不可见,是一个存储图元的容器,必须通过与之相连的QGraphicsView视图来显…

【Azure 架构师学习笔记】- Azure Databricks (14) -- 搭建Medallion Architecture part 2

本文属于【Azure 架构师学习笔记】系列。 本文属于【Azure Databricks】系列。 接上文 【Azure 架构师学习笔记】- Azure Databricks (13) – 搭建Medallion Architecture part 1 前言 上文搭建了ADB 与外部的交互部分&#xff0c;本篇搭建ADB 内部配置来满足medallion 架构。…

AI视频领域的DeepSeek—阿里万相2.1图生视频

让我们一同深入探索万相 2.1 &#xff0c;本文不仅介绍其文生图和文生视频的使用秘籍&#xff0c;还将手把手教你如何利用它实现图生视频。 如下为生成的视频效果&#xff08;我录制的GIF动图&#xff09; 如下为输入的图片 目录 1.阿里巴巴全面开源旗下视频生成模型万相2.1模…

PostgreSQL 安装与使用

下载地址: EDB: Open-Source, Enterprise Postgres Database Management 安装图形化安装界面安装。安装完后将bin目录配置到系统环境变量 执行psql -h localhost -p 5432 -U postgres 密码在安装过程中设置的 ​ 0、修改密码 ALTER USER sonar WITH PASSWORD 123456; 1、新…

Go加spy++隐藏窗口

最近发现有些软件的窗口就像狗皮膏药一样&#xff0c;关也关不掉&#xff0c;一点就要登录&#xff0c;属实是有点不爽了。 窗口的进程不能杀死&#xff0c;但是窗口我不想要。思路很简单&#xff0c;用 spy 找到要隐藏的窗口的句柄&#xff0c;然后调用 Windows 的 ShowWindo…

[内网安全] Windows 域认证 — Kerberos 协议认证

&#x1f31f;想系统化学习内网渗透&#xff1f;看看这个&#xff1a;[内网安全] 内网渗透 - 学习手册-CSDN博客 0x01&#xff1a;Kerberos 协议简介 Kerberos 是一种网络认证协议&#xff0c;其设计目标是通过密钥系统为客户机 / 服务器应用程序提供强大的认证服务。该认证过…

服务器数据恢复—raid5阵列中硬盘掉线导致上层应用不可用的数据恢复案例

服务器数据恢复环境&故障&#xff1a; 某公司一台服务器&#xff0c;服务器上有一组由8块硬盘组建的raid5磁盘阵列。 磁盘阵列中2块硬盘的指示灯显示异常&#xff0c;其他硬盘指示灯显示正常。上层应用不可用。 服务器数据恢复过程&#xff1a; 1、将服务器中所有硬盘编号…

π0源码解析——一个模型控制7种机械臂:对开源VLA sota之π0源码的全面分析,含我司的部分落地实践

前言 ChatGPT出来后的两年多&#xff0c;也是我疯狂写博的两年多(年初deepseek更引爆了下)&#xff0c;比如从创业起步时的15年到后来22年之间 每年2-6篇的&#xff0c;干到了23年30篇、24年65篇、25年前两月18篇&#xff0c;成了我在大模型和具身的原始技术积累 如今一转眼…

Dify+DeepSeek | Excel数据一键可视化(创建步骤案例)(echarts助手.yml)(文档表格转图表、根据表格绘制图表、Excel绘制图表)

Dify部署参考&#xff1a;Dify Rag部署并集成在线Deepseek教程&#xff08;Windows、部署Rag、安装Ragan安装、安装Dify安装、安装ollama安装&#xff09; DifyDeepSeek - Excel数据一键可视化&#xff08;创建步骤案例&#xff09;-DSL工程文件&#xff08;可直接导入&#x…