bp神经网络训练函数选择,BP神经网络训练过程

BP神经网络的训练集需要大样本吗?一般样本个数为多少?

BP神经网络的训练集需要大样本吗?一般样本个数为多少?

BP神经网络样本数有什么影响学习神经网络这段时间,有一个疑问,BP神经网络中训练的次数指的网络的迭代次数,如果有a个样本,每个样本训练次数n,则网络一共迭代an次,在n>>a 情况下 , 网络在不停的调整权值,减小误差,跟样本数似乎关系不大。

而且,a大了的话训练时间必然会变长。换一种说法,将你的数据集看成一个固定值, 那么样本集与测试集 也可以按照某种规格确定下来如7:3 所以如何看待 样本集的多少与训练结果呢?

或者说怎么使你的网络更加稳定,更加符合你的所需 。

我尝试从之前的一个例子中看下区别如何用70行Java代码实现深度神经网络算法作者其实是实现了一个BP神经网络 ,不多说,看最后的例子一个运用神经网络的例子最后我们找个简单例子来看看神经网络神奇的效果。

为了方便观察数据分布,我们选用一个二维坐标的数据,下面共有4个数据,方块代表数据的类型为1,三角代表数据的类型为0,可以看到属于方块类型的数据有(1,2)和(2,1),属于三角类型的数据有(1,1),(2,2),现在问题是需要在平面上将4个数据分成1和0两类,并以此来预测新的数据的类型。

图片描述我们可以运用逻辑回归算法来解决上面的分类问题,但是逻辑回归得到一个线性的直线做为分界线,可以看到上面的红线无论怎么摆放,总是有一个样本被错误地划分到不同类型中,所以对于上面的数据,仅仅一条直线不能很正确地划分他们的分类,如果我们运用神经网络算法,可以得到下图的分类效果,相当于多条直线求并集来划分空间,这样准确性更高。

图片描述简单粗暴,用作者的代码运行后 训练5000次 。

根据训练结果来预测一条新数据的分类(3,1)预测值 (3,1)的结果跟(1,2)(2,1)属于一类 属于正方形这时如果我们去掉 2个样本,则样本输入变成如下//设置样本数据,对应上面的4个二维坐标数据 double[][] data = new double[][]{{1,2},{2,2}}; //设置目标数据,对应4个坐标数据的分类 double[][] target = new double[][]{{1,0},{0,1}};12341234则(3,1)结果变成了三角形,如果你选前两个点 你会发现直接一条中间线就可以区分 这时候的你的结果跟之前4个点时有区别 so 你得增加样本 直到这些样本按照你所想要的方式分类 ,所以样本的多少 重要性体现在,样本得能反映所有的特征值(也就是输入值) ,样本多少或者特征(本例子指点的位置特征)决定的你的网络的训练结果,!

!!这是 我们反推出来的结果 。这里距离深度学习好像近了一步。另外,这个70行代码的神经网络没有保存你训练的网络 ,所以你每次运行都是重新训练的网络。

其实,在你训练过后 权值已经确定了下来,我们确定网络也就是根据权值,so只要把训练后的权值保存下来,将需要分类的数据按照这种权值带入网络,即可得到输出值,也就是一旦网络确定, 权值也就确定,一个输入对应一个固定的输出,不会再次改变!

个人见解。

最后附上作者的源码,作者的文章见开头链接下面的实现程序可以直接拿去使用,import .Random;public class BpDeep{ public double[][] layer;//神经网络各层节点 public double[][] layerErr;//神经网络各节点误差 public double[][][] layer_weight;//各层节点权重 public double[][][] layer_weight_delta;//各层节点权重动量 public double mobp;//动量系数 public double rate;//学习系数 public BpDeep(int[] layernum, double rate, double mobp){ = mobp; = rate; layer = new double[layernum.length][]; layerErr = new double[layernum.length][]; layer_weight = new double[layernum.length][][]; layer_weight_delta = new double[layernum.length][][]; Random random = new Random(); for(int l=0;l。

谷歌人工智能写作项目:神经网络伪原创

BP神经网络中的训练函数如何选取

神经网络不同的网络有这不同的训练函数,BP神经网络有两种训练函数,trainbp(),利用BP算法训练前向神经网络写作猫

trainbpx(),利用快速BP算法训练前向神经网络,即采用了动量或自适应学习,可减少训练时间,tansig函数是神经元的传递函数,与训练函数无关,在trainbp()函数中含有要训练神经元的函数。

BP网络中的trainlm训练函数,需要设置的参数?

以输出层权值更新的算法做说明: 新w(i,j)=旧w(i,j)+a*E(i)O(j)+b*oldw(i,j), 其中,新w(i,j)为计算一步以后的权,旧w(i,j)为初始权,E(i)为输出层第i个神经元的输出误差,O(j)为隐含层第j个神经元的输出数据,a学习系数,b惯性系数。

其实b就是优化设计中梯度下降法的步长,训练函数和梯度下降法是一个样子的,都是通过初始点,选定负梯度方向,计算步长,然后得到下一点,如此循环,神经网络把梯度下降法简化了,直接选定步长,不再计算步长了,

还是那个问题 ~ BP神经网络里训练函数

训练用的数据是用来给神经网络学习和测试的,让神经网络学习到这样的输入能有怎样的输出。

训练数据一般分为两组,一组用于神经网络学习(一般情况这组数据占总数据量的3/4左右,也可能更多,依情况而定),另一组是用于测试神经网络学习效果的,将测试的输出结果和输入数据应有的输出结果做比较(以均方和误差作标准),从而验证神经网络训练是否成功。

bp神经网络对输入数据和输出数据有什么要求

p神经网络的输入数据越多越好,输出数据需要反映网络的联想记忆和预测能力。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。

它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。

BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。

BP网络具有高度非线性和较强的泛化能力,但也存在收敛速度慢、迭代步数多、易于陷入局部极小和全局搜索能力差等缺点。

扩展资料:BP算法主要思想是:输入学习样本,使用反向传播算法对网络的权值和偏差进行反复的调整训练,使输出的向量与期望向量尽可能地接近,当网络输出层的误差平方和小于指定的误差时训练完成,保存网络的权值和偏差。

1、初始化,随机给定各连接权及阀值。

2、由给定的输入输出模式对计算隐层、输出层各单元输出3、计算新的连接权及阀值,计算公式如下:4、选取下一个输入模式对返回第2步反复训练直到网络设输出误差达到要求结束训练。

参考资料来源:百度百科-BP神经网络。

能不能介绍一下,BP神经网络中权系数初始值、学习率(步长)、学习步数、学习目标最小误差等参数

权值第一次是被随机给定的较小的值,步长一般设为较小的正值(防止越过最小值),学习步数是由权值和步长决定的,误差一般采用最小均方误差。详细的介绍可以百度一下很多课件或者课本的。

若不想找我可以发给你,给我邮箱。

BP神经网络模型各个参数的选取问题

样本变量不需要那么多,因为神经网络的信息存储能力有限,过多的样本会造成一些有用的信息被丢弃。如果样本数量过多,应增加隐层节点数或隐层数目,才能增强学习能力。

一、隐层数 一般认为,增加隐层数可以降低网络误差(也有文献认为不一定能BP神经网络模型各个参数的选取问题。

BP神经网络的mu参数是学习率么?训练结果val fail中的validation check=6什么意思

神经网络的样本若输入网络,默认情况下会将样本随即分为3类:训练样本,确认样本和测试样本。确认检查值默认是6,它的意思是指随着网络利用训练样本进行训练的过程中,确认样本的误差曲线连续6次迭代不在下降。

这时训练终止(这只是训练终止条件之一,满足任一终止条件,训练过程都将终止)深层含义你可以这样理解,如果随着网络的训练,确认样本的误差已经基本不在减小,甚至增大,那么就没有必要再去训练网络了,因为继续训练下去的话,在利用测试样本进行测试网络的话,测试样本的误差将同样不会有所改善,甚至会出现过度拟合的现象。

validation checks已经达到设置的值了,所以停止训练了,如果网络在连续max_fail epochs后不能提高网络性能,就停止训练。

有三种方法解决这个问题:1 提高validation checks的数值,比如设置net.trainParam.max_fail = 200;其实这等于自己糊弄自己严重不推荐,出现停止训练,就是因为被训练的网络已经过拟合,停下来是应该的。

但6的确有点小,建议改成10到20之间的数2 修改被训练的网络,比如说再加一个隐藏层试试3 如果是数据太相近的问题,试试选择用divideind。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/29424.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

利用BP神经网络对语音特征信号数据集进行分类

最近给学院老师的一篇论文帮忙改进BP神经网络,由于最后要发表论文,神经网络必须自己手写,搞了几个晚上,总算把基础的BP神经网络写出来,接下来再把老师的改进算法实现就ok了。**(当然那代码不能公开了&#…

英语口语中的音变现象及读音规则

英语口语中的音变现象是指再说英语的过程中出于“省力” 的原因,在读英语的时候唇舌处于放松的状态,可以让我们更轻松地说英语。音变现象包括:连读,弱读,缩读,浊化,异化。这五大音变现象最具有代…

Speech Representation预训练模型综述

最近在看Speech Representation预训练相关的论文,NLP的Bert模型大杀四方后,语音领域也开始涌现一些优秀的预训练模型,比如:Mockingjay,Wav2Vec,PASE,DeCoAR系列。 《Probing acoustic represen…

【综述】NLP 对抗训练(FGM、PGD、FreeAT、YOPO、FreeLB、SMART)

在对抗训练中关键的是需要找到对抗样本,通常是对原始的输入添加一定的扰动来构造,然后放给模型训练,这样模型就有了识别对抗样本的能力。其中的关键技术在于如果构造扰动,使得模型在不同的攻击样本中均能够具备较强的识别性 对抗…

端到端语音识别模型LAS(listen-attention-spell)

目录 端到端语音识别模型LAS介绍:模型:模型代码片段 端到端语音识别模型LAS Listen, Attend and Spell (LAS)的神经网络结构,由listener和speller组成,listener是以fbank为输入的pyramidal RNN encoder,speller是基于…

微调Whisper语音识别模型和加速推理

前言 OpenAI在开源了号称其英文语音辨识能力已达到人类水准的Whisper项目,且它亦支持其它98种语言的自动语音辨识。Whisper所提供的自动语音识与翻译任务,它们能将各种语言的语音变成文本,也能将这些文本翻译成英文。本项目主要的目的是为了…

【回答问题】ChatGPT上线了!给我推荐20个比较流行的nlp预训练模型

目录 给我推荐20个比较流行的nlp预训练模型给我推荐20个比较流行的nlp预训练模型源码给我推荐20个比较流行的nlp预训练模型 BERT (谷歌) GPT-2 (OpenAI) RoBERTa (Facebook) ALBERT (谷歌) ELECTRA (谷歌) XLNet (谷歌/纽约大学) T5 (OpenAI) Transformer-XL (谷歌/香港中文大…

真实世界的人工智能应用落地——OpenAI篇 ⛵

💡 作者:韩信子ShowMeAI 📘 深度学习实战系列:https://www.showmeai.tech/tutorials/42 📘 本文地址:https://www.showmeai.tech/article-detail/414 📢 声明:版权所有,转…

谈谈ChatGPT是否可以替代人

起初我以为我是搬砖的,最近发现其实只是一块砖,哪里需要哪里搬。 这两天临时被抽去支援跨平台相关软件开发,帮忙画几个界面。有了 ChatGPT 之后就觉得以前面向 Googel 编程会拉低我滴档次和逼格,于是全部面向 ChatGPT 编程了。 我…

处理Element 日期选择器el-date-picker 限制时间跨度一年

处理Element 日期选择器el-date-picker 限制时间跨度一年 。 主要通过pickerOptions里的disabledDate来控制禁止选中的日期。实现思想就是,当选中第一个开始日期时,拿到该时间戳计算时间范围,然后控制接下来选中时间在一年以内,超…

elementui 中 DatePicker 日期选择器 设置仅能选今日之前 且展示是上个月到这个月的日期

使用了elementui组件的DatePicker组件,设置了日期选择范围为当前日期后,效果如图,右侧面板是灰色的,使用体验感不太好 而我想要实现的是这种效果:一点击出来,展示的就是上个月到这个月的日期 仔细翻阅了官…

vue+elementui 日期选择器

// 这个日期选择器的规则是开始的日期不能超过当天的日期 // 结束的日期不能超过开始的日期并且只能选开始日期选择的这一年的日期 结束的日期默认年份是开始日期选择的年份<el-form:model"DateTimeModel"ref"DateTimeRef":rules"DateTimeRules&qu…

elementui选择月份范围,限制只能选前后1年范围内

需求&#xff1a; 选中2022-2月之后可选范围为2021-2月~2023-2月&#xff0c;其余的月份禁用 代码&#xff1a; <el-form :model"queryParams" ref"queryForm" :inline"true"><el-form-item label"时间范围"><el-date-…

element plus 限制时间范围选择器,开始日期和结束日期不能超过一年

1.限制开始日期和结束日期不能超过一年 <el-date-pickerclass"date-timeselect"v-model"timeValue"type"daterange"value-format"YYYY-MM-DD"format"YYYY-MM-DD"range-separator"至"start-placeholder"开…

vue2 + elementui 日期时间选择器 禁止选择当前时间之前的日期及时间,并添加相应校验规则

项目里有这样一个需求&#xff1a;文章设置的预发布时间不得早于当前时间&#xff08;包括日期和时分秒时间&#xff09;。 具体实现如下&#xff1a; 1、在日期时间选择其中设置禁止选中&#xff08;包括日期和时间&#xff09; &#xff08;1&#xff09;在html&#xff0…

vue Element ui日期插件的使用设置日期选择范围是当前时间到一年

<li> <p class"input_date"><el-date-pickerv-model"value1"type"date"placeholder"选择日期"prefix-icon" "format"yyyy-MM-dd"value-format"yyyy-MM-dd":picker-options"pickerO…

ElementUI 日期选择器 datepicker选择范围限制

ElementUI 日期选择器 datepicker选择范围限制 在使用 el-date-picker 的时候&#xff0c;经常会对选择的时间进行一定限制&#xff0c;所以今天就总结了一些范围 1、第一步 给 el-date-picker 组件添加 picker-options 属性&#xff0c;并绑定 对应数据 pickerOptions 2、对…

elementUI 日期选择器限制时间范围

elementUI 日期选择器限制时间范围 &#xff08;借鉴或根据自己需求修改&#xff0c;纯用于自己记录使用并学习&#xff09; 产品需求&#xff0c;新建任务的时候&#xff0c;选择一个名称&#xff0c;然后返回该名称的有效日期&#xff0c;只能在有限日期内选择任务的时间 使…

html 手机扁平化范围选择日历控件,ElementUI 日期选择器 datepicker 选择范围限制

在使用elementUI中日期选择器时,经常会遇到这样的需求——对可选择的时间范围有一定限制,比如我遇到的就是:只能选择今天以前的一年以内的日期。 查阅官方文档,我们发现它介绍的并不详细,下面我们就来详细介绍一下: 1.给 el-date-picker 组件添加 picker-options 属性,并…

Pandas+ChatGPT强强结合诞生PandasAI,数据分析师行业要变天了?

大家好,我是千与千寻,可以叫我千寻,我自己主要的编程语言是Python和Java。 说到Python编程语言,使用Python语言主要使用的是数据科学领域的从业者。 Python编程语言之所以在数据科学领域十分火热,源于Python语言的三大数据科学工作包,NumPy,Pandas,SciPy。 以下是三…