YARN集群 和 MapReduce 原理及应用

YARN集群模式

本文内容需要基于 Hadoop 集群搭建完成的基础上来实现

如果没有搭建,请先按上一篇:

<Linux 系统 CentOS7 上搭建 Hadoop HDFS集群详细步骤>

搭建:https://mp.weixin.qq.com/s/zPYsUexHKsdFax2XeyRdnA

配置hadoop安装目录下的 etc/hadoop/yarn-site.xml

配置hadoop安装目录下的 etc/hadoop/mapred-site.xml

例如:/opt/apps/hadoop-3.2.4/etc/hadoop/

配置 yarn-site.xml

vim etc/hadoop/yarn-site.xml

添加内容如下:

<configuration><property><name>yarn.nodemanager.aux-services</name><value>mapreduce_shuffle</value></property><property><name>yarn.resourcemanager.hostname</name><value>node3</value></property>
</configuration>

注意:上面node3 为自己规划的作为 resourcemanager 节点的主机名

配置 mapred-site.xml

[zhang@node3 hadoop]$ vi mapred-site.xml

添加内容如下:

<configuration><property><name>mapreduce.framework.name</name><value>yarn</value></property><property><name>yarn.app.mapreduce.am.env</name><value>HADOOP_MAPRED_HOME=/opt/apps/hadoop-3.2.4</value></property><property><name>mapreduce.map.env</name><value>HADOOP_MAPRED_HOME=/opt/apps/hadoop-3.2.4</value></property><property><name>mapreduce.reduce.env</name><value>HADOOP_MAPRED_HOME=/opt/apps/hadoop-3.2.4</value></property>
</configuration>

注意:上面的 /opt/apps/hadoop-3.2.4 为自己 hadoop 的安装目录

同步配置

修改完成后,需要复制配置到其他所有节点

scp -r etc/ zhang@node1:/opt/apps/hadoop-3.2.4/

scp -r etc/ zhang@node1:/opt/apps/hadoop-3.2.4/

在 $HADOOP_HOME/etc/下

scp -r hadoop/yarn-site.xml zhang@node2:/opt/apps/hadoop-3.2.4/etc/hadoop/

也可以通过 pwd来表示远程拷贝到和当前目录相同的目录下

scp -r hadoop node2:`pwd`  # 注意:这里的pwd需要使用``(键盘右上角,不是单引号),表示当前目录

启动 YARN 集群

 # 在主服务器(ResourceManager所在节点)上hadoop1启动集群sbin/start-yarn.sh# jps查看进程,如下所⽰代表启动成功
==========node1===========
[zhang@node1 hadoop]$ jps
7026 DataNode
7794 Jps
6901 NameNode
7669 NodeManager==========node2===========
[zhang@node2 hadoop]$ jps
9171 NodeManager
8597 DataNode
8713 SecondaryNameNode
9294 Jps==========node3===========
[zhang@node3 etc]$ start-yarn.sh
Starting resourcemanager
Starting nodemanagers
[zhang@node3 etc]$ jps
11990 ResourceManager
12119 NodeManager
12472 Jps
11487 DataNode

启动成功后,可以通过浏览器访问 ResourceManager 进程所在的节点 node3 来查询运行状态

截图如下:

图片

MapReduce

简介和原理

MapReduce 是一种分布式编程模型,最初由 Google 提出并在学术论文中公开描述,后来被广泛应用于大规模数据处理,尤其是 Apache Hadoop 等开源项目中实现了这一模型。MapReduce 的核心思想是将复杂的大量数据处理任务分解成两个主要阶段:Map(映射)阶段和 Reduce(归约)阶段。

Map(映射)阶段

  • 将输入数据集划分为独立的块。

  • 对每个数据块执行用户自定义的 map 函数,该函数将原始数据转换为一系列中间键值对。

  • 输出的结果是中间形式的键值对集合,这些键值对会被排序并分区。

Shuffle(洗牌)和 Sort(排序)阶段

  • 在 map 阶段完成后,系统会对产生的中间键值对进行分发、排序和分区操作,确保具有相同键的值会被送到同一个 reduce 节点。

Reduce(归约)阶段

  • 每个 reduce 节点接收一组特定键的中间键值对,并执行用户自定义的 reduce 函数。

  • reduce 函数负责合并相同的键值对,并生成最终输出结果。

整个过程通过高度并行化的方式完成,非常适合处理 PB 级别的海量数据。由于其简单易懂的设计理念和强大的并行处理能力,MapReduce 成为了大数据处理领域的重要基石之一,尤其适用于批处理类型的分析任务,如网页索引构建、日志分析、机器学习算法实现等。

下面通过一张使用 MapReduce 进行单词数统计的过程图,来更直观的了解 MapReduce 工作过程和原理

图片

MapReduce 示例程序

在搭建好 YARN 集群后,就可以测试 MapReduce 的使用了,下面通过两个案例来验证使用 MapReduce

  • 单词统计

  • pi 估算

在hadoop 安装目录下的 share/hadoop/mapreduce 目录下存放了一些示例程序 jar 包,

可以调用 hadoop jar 命令来调用示例程序

具体步骤如下:

PI 估算案例

先切换目录到 安装目录/share/hadoop/mapreduce/ 下

[zhang@node3 ~]$ cd /opt/apps/hadoop-3.2.4/share/hadoop/mapreduce/
[zhang@node3 mapreduce]$ ls
hadoop-mapreduce-client-app-3.2.4.jar              hadoop-mapreduce-client-shuffle-3.2.4.jar
hadoop-mapreduce-client-common-3.2.4.jar           hadoop-mapreduce-client-uploader-3.2.4.jar
hadoop-mapreduce-client-core-3.2.4.jar             hadoop-mapreduce-examples-3.2.4.jar
hadoop-mapreduce-client-hs-3.2.4.jar               jdiff
hadoop-mapreduce-client-hs-plugins-3.2.4.jar       lib
hadoop-mapreduce-client-jobclient-3.2.4.jar        lib-examples
hadoop-mapreduce-client-jobclient-3.2.4-tests.jar  sources
hadoop-mapreduce-client-nativetask-3.2.4.jar
[zhang@node3 mapreduce]$ 

调用 jar 包执行

hadoop jar hadoop-mapreduce-examples-3.2.4.jar pi 3 4

[zhang@node3 mapreduce]$ hadoop jar hadoop-mapreduce-examples-3.2.4.jar pi 3 4
Number of Maps  = 3  # 
Samples per Map = 4
Wrote input for Map #0
Wrote input for Map #1
Wrote input for Map #2
Starting Job
2024-03-23 17:48:56,496 INFO client.RMProxy: Connecting to ResourceManager at node3/192.168.184.13:8032
2024-03-23 17:48:57,514 INFO mapreduce.JobResourceUploader: Disabling Erasure Coding for #............省略
2024-03-23 17:48:59,194 INFO mapreduce.Job: Running job: job_1711186711795_0001
2024-03-23 17:49:10,492 INFO mapreduce.Job: Job job_1711186711795_0001 running in uber mode : false
2024-03-23 17:49:10,494 INFO mapreduce.Job:  map 0% reduce 0%
2024-03-23 17:49:34,363 INFO mapreduce.Job:  map 100% reduce 0%
............Shuffle ErrorsBAD_ID=0CONNECTION=0IO_ERROR=0WRONG_LENGTH=0WRONG_MAP=0WRONG_REDUCE=0File Input Format Counters Bytes Read=354File Output Format Counters Bytes Written=97
Job Finished in 53.854 seconds
Estimated value of Pi is 3.66666666666666666667  # 计算结果

命令的含义

这个命令的具体含义是:

  • hadoop jar: 命令用于执行 Hadoop 应用程序,这里的应用程序是指从 JAR 包 hadoop-mapreduce-examples-3.2.4.jar 中提取的 MapReduce 程序。

  • pi: 这是具体的示例程序名称,用于通过概率方法估算π值。

  • 2: 这个数字代表实验的总样本数(也称为总投点数),意味着将会随机投掷2次点来估计π值。

  • 4: 这个数字通常表示地图任务(map tasks)的数量,也就是说,计算过程将会被拆分为4个部分来并行执行。

单词统计案例

hadoop-mapreduce-examples-3.2.4.jar 是 Apache Hadoop MapReduce 框架的一部分,其中包含了多个演示 MapReduce 概念和功能的例子程序,其中一个经典例子就是 wordcount

wordcount 示例程序展示了如何使用 MapReduce 模型处理大规模文本数据,统计文本中每个单词出现的次数。当你在 Hadoop 环境中执行如下命令时:

hadoop jar hadoop-mapreduce-examples-3.2.4.jar wordcount input_path output_path

这里发生了以下过程:

  1. input_path:指定输入数据的位置,通常是 HDFS 上的一个目录,该目录下的所有文件将作为输入数据源,被分割成各个映射任务(Mapper)处理。

  2. Mapper:每个映射任务读取一段输入数据,并将其拆分成单词,然后为每个单词及其出现次数生成键值对 <word, 1>

  3. Reducer:所有的映射任务完成后,Reducer 对由 Mapper 发出的中间键值对进行汇总,计算出每个单词的总出现次数,并将最终结果输出到 output_path 指定的 HDFS 目录下。

演示步骤如下:

新建文件

首先在 /opt/下新建目录 data 用来存放要统计的文件

新建 word.txt 文件并输入内容如下:

hello java
hello hadoop
java hello
hello zhang java

具体命令如下:

[zhang@node3 opt]$ mkdir data
[zhang@node3 opt]$ cd data
[zhang@node3 data]$ ls
[zhang@node3 data]$ vim word.txt
上传文件到hadoop
  • hdfs dfs 命令

  • 新建 input 目录用来存放 word.txt 文件

[zhang@node3 data]$ hdfs dfs -mkdir /input  # 新建目录
[zhang@node3 data]$ hdfs dfs -ls /          # 查看目录
Found 1 items
drwxr-xr-x   - zhang supergroup          0 2024-03-23 16:52 /input
[zhang@node3 data]$ hdfs dfs -put word.txt /input # 上传文件到目录
[zhang@node3 data]$ 
统计单词

hadoop jar hadoop-mapreduce-examples-3.2.4.jar wordcount /input /outputx

hadoop jar 为命令

hadoop-mapreduce-examples-3.2.4.jar 为当前目录下存在jar文件

wordcount 为要调用的具体的程序

/input 为要统计单词的文件所在的目录,此目录为 hadoop 上的目录

/outputx 为输出统计结果存放的目录

注意:/outputx 目录不能先创建,只能是执行时自动创建,否则异常

[zhang@node3 mapreduce]$ hadoop jar hadoop-mapreduce-examples-3.2.4.jar wordcount /input /outputx
2024-03-23 18:11:55,438 INFO client.RMProxy: Connecting to ResourceManager at node3/192.168.184.13:8032
#............省略
2024-03-23 18:12:17,514 INFO mapreduce.Job:  map 0% reduce 0%
2024-03-23 18:12:50,885 INFO mapreduce.Job:  map 100% reduce 0%
2024-03-23 18:12:59,962 INFO mapreduce.Job:  map 100% reduce 100%
2024-03-23 18:12:59,973 INFO mapreduce.Job: Job job_1711186711795_0003 completed successfully
2024-03-23 18:13:00,111 INFO mapreduce.Job: Counters: 54File System CountersFILE: Number of bytes read=188FILE: Number of bytes written=1190789FILE: Number of read operations=0#............省略HDFS: Number of write operations=2HDFS: Number of bytes read erasure-coded=0Job Counters Launched map tasks=4Launched reduce tasks=1Data-local map tasks=4Total time spent by all maps in occupied slots (ms)=125180#............省略Map-Reduce FrameworkMap input records=13Map output records=27Map output bytes=270Map output materialized bytes=206#............省略Shuffle ErrorsBAD_ID=0CONNECTION=0IO_ERROR=0WRONG_LENGTH=0WRONG_MAP=0WRONG_REDUCE=0File Input Format Counters Bytes Read=163File Output Format Counters Bytes Written=51
[zhang@node3 mapreduce]$ 
查看统计结果

先查看输出目录下的结果文件名

在 hdfs dfs -cat 查看内容

[zhang@node3 mapreduce]$ hdfs dfs -ls /outputx  # 查看输出目录下文件
Found 2 items
-rw-r--r--   3 zhang supergroup          0 2024-03-23 18:12 /outputx/_SUCCESS
-rw-r--r--   3 zhang supergroup         51 2024-03-23 18:12 /outputx/part-r-00000
[zhang@node3 mapreduce]$ hdfs dfs -cat /outputx/part-r-00000  # 查看内容
hadoop    3
hello    14
java    6
python    2
spring    1
zhang    1

常见问题

错误1:

[2024-03-15 08:00:16.276]Container exited with a non-zero exit code 1. Error file: prelaunch.err. Last 4096 bytes of prelaunch.err : Last 4096 bytes of stderr : Error: Could not find or load main class org.apache.hadoop.mapreduce.v2.app.MRAppMaster

Please check whether your etc/hadoop/mapred-site.xml contains the below configuration: yarn.app.mapreduce.am.env HADOOP_MAPRED_HOME=${full path of your hadoop distribution directory}

解决办法:

根据上面提示修改 mapred-site.xml ,配置 HADOOP_MAPRED_HOME,指向 hadoop 安装目录 即可。

错误2:

运行 Java 程序,调用 Hadoop 时,抛出异常

2024-03-16 14:35:57,699 INFO ipc.Client: Retrying connect to server: node3/192.168.184.13:8032. Already tried 7 time(s); retry policy is RetryUpToMaximumCountWithFixedSleep(maxRetries=10, sleepTime=1000 MILLISECONDS)

原因:

连接node3的 yarn 时,没有成功,说明没启动 start-yarn.sh

错误3:

node2: ERROR: JAVA_HOME is not set and could not be found.

解决办法:

${HADOOP_HOME}/etc/hadoop/hadoop_en.sh 添加

JAVA_HOME=/opt/apps/opt/apps/jdk1.8.0_281

注意:不能使用 JAVA_HOME=${JAVA_HOME}

错误4:

[zhang@node3 hadoop]$ start-dfs.sh
ERROR: JAVA_HOME /opt/apps/jdk does not exist.

解决办法:

修改 /hadoop/etc/hadoop/hadoop-env.sh 文件

添加 JAVA_HOME 配置

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/295056.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【JavaEE初阶系列】——多线程案例三——定时器

目录 &#x1f6a9;定时器是什么 &#x1f6a9;标准库中的定时器 &#x1f6a9;自定义定时器 &#x1f388;构造Task类 &#x1f4dd;相对时间和绝对时间 &#x1f388;构造MyTime类 &#x1f4dd;队列空和队列不为空 &#x1f4dd;wait(带参)解决消耗资源问题 &#…

CentOS7安装Flink1.17伪分布式

前提条件 拥有1台CentOS7 CentOS7安装好jdk&#xff0c;官方文档要求java 11&#xff0c;使用java 8也可以。可参考 CentOS7安装jdk8 下载安装包 下载安装包 [hadoopnode1 ~]$ cd installfile/ [hadoopnode1 installfile]$ wget https://archive.apache.org/dist/flink/flin…

4款在线网页原型图设计软件推荐

与桌面端相比&#xff0c;在线网页原型设计软件的使用具有优势&#xff0c;因为在线网页原型设计软件在整个使用过程中不需要安装&#xff0c;在线网页原型设计软件在任何地方都没有限制。更重要的是&#xff0c;无论是现在使用的 Linux&#xff0c;在线网页原型设计软件在操作…

SV学习笔记(一)

SV&#xff1a;SystemVerilog 开启SV之路 数据类型 內建数据类型 四状态与双状态 &#xff1a; 四状态指0、1、X、Z&#xff0c;包括logic、integer、 reg、 wire。双状态指0、1&#xff0c;包括bit、byte、 shortint、int、longint。 有符号与无符号 &#xff1a; 有符号&am…

使用 FinalShell 进行远程连接(ssh 远程连接 Linux 服务器)

目录 前言 基本使用教程 新建远程连接 连接主机 自定义命令 路由追踪 前言 后端开发&#xff0c;必然需要和服务器打交道&#xff0c;部署应用&#xff0c;排查问题&#xff0c;查看运行日志等等。一般服务器都是集中部署在机房中&#xff0c;也有一些直接是云服务器&am…

UGUI 进阶

UI事件监听接口 目前所有的控件都只提供了常用的事件监听列表 如果想做一些类似长按&#xff0c;双击&#xff0c;拖拽等功能是无法制作的 或者想让Image和Text&#xff0c;RawImage三大基础控件能够响应玩家输入也是无法制作的 而事件接口就是用来处理类似问题 让所有控件都…

【MySQL系列】使用 ALTER TABLE 语句修改表结构的方法

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

图的应用试题

01&#xff0e;任何一个无向连通图的最小生成树( )。 A.有一棵或多棵 B.只有一棵 C.一定有多棵 D.可能不存在 02.用Prim算法和Kruskal算法构造图的最小生成树&#xff0c;…

2024/4/2 IOday4

使用文件IO 实现父进程向子进程发送信息&#xff0c;并总结中间可能出现的各种问题 #include <stdio.h> #include <string.h> #include <stdlib.h> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <unistd…

【从零开始】自建高质量免费ip代理池(截止2024.4.1最新版)

文章目录 前言基础常识代理服务器状态码端口号 常见免费ip代理池网站实现思路代码实现main.pyutils.pydemo.py 结果如下 前言 为了防止ip被封后还能爬取网页&#xff0c;最常见的方法就是自己构建一个ip代理池。 本来用的是下面这个开源项目ip代理池&#xff0c; github开源项…

InternLM

任务一 运行1.8B模型&#xff0c;并对话 User >>> 请创作一个 300 字的小故事 在一片茂密的森林里&#xff0c;住着一只小松鼠&#xff0c;它的名字叫做小雪。小雪非常活泼好动&#xff0c;经常在树上跳跃玩耍。有一天&#xff0c;小雪发现了一个神秘的洞穴&#xf…

主干网络篇 | YOLOv8改进之用RCS-OSA替换C2f(来源于RCS-YOLO)

前言:Hello大家好,我是小哥谈。RCS-YOLO是一种目标检测算法,它是基于YOLOv3算法的改进版本。通过查看RCS-YOLO的整体架构可知,其中包括RCS-OSA模块。RCS-OSA模块在模型中用于堆叠RCS模块,以确保特征的复用并加强不同层之间的信息流动。本文就给大家详细介绍如何将RCS-YOLO…

Crossmanager 2024 64 bit(CAD文件格式转换工具)安装包分享

新增功能 1、NavisWorks输入&#xff1a;首次发布&#xff0c;支持2016至2023版本 2、Fusion 360输入&#xff1a;首次发布&#xff0c;支持版本2.0 3、Catia V6/3D体验输入&#xff1a;支持R2023x版本 4、Solidworks输入&#xff1a;支持Solidworks 2023版本 5、Solid Ed…

加密/ 解密 PDF:使用Python为PDF文档设置、移除密码

在数字化时代&#xff0c;文档的安全性变得越来越重要。特别是对于包含敏感信息的PDF文件&#xff0c;确保其不被未经授权的人员访问或修改是至关重要的。本文将介绍如何使用Python在PDF文档中设置密码&#xff0c;以及如何移除已经设置的密码。 目录 PDF加密基础知识 Pytho…

应用层的http和https协议

HTTP和HTTPS http和https是什么&#xff1f;http 常用的协议版本http/1.0http/1.1改进http/2.0 改进 http 和https有什么区别&#xff1f; http和https是什么&#xff1f; HTTP&#xff08;超文本传输协议&#xff09;是一种用于在网络上传输超文本数据的协议。它是一种客户端-…

考研数学|《1800》+《660》精华搭配混合用(经验分享)

肯定不行&#xff0c;考研数学哪有这么容易的&#xff01; 先说说这两本习题册&#xff0c;李永乐老师推出的新版660题&#xff0c;相较于18年前的版本&#xff0c;难度略有降低&#xff0c;更加适合初学者。因此&#xff0c;对于处于基础阶段的学习者来说&#xff0c;新版660…

ssm017网上花店设计+vue

网上花店的设计与实现 摘 要 网络技术和计算机技术发展至今&#xff0c;已经拥有了深厚的理论基础&#xff0c;并在现实中进行了充分运用&#xff0c;尤其是基于计算机运行的软件更是受到各界的关注。加上现在人们已经步入信息时代&#xff0c;所以对于信息的宣传和管理就很关…

用户体验:探讨Facebook如何优化用户体验

在数字化时代&#xff0c;用户体验是社交媒体平台成功与否的关键因素之一。作为全球最大的社交媒体平台之一&#xff0c;Facebook一直在努力优化用户体验&#xff0c;从功能设计到内容呈现再到隐私保护&#xff0c;不断提升用户满意度。本文将深入探讨Facebook如何优化用户体验…

【与C++的邂逅】---- 函数重载与引用

关注小庄 顿顿解馋(▿) 喜欢的小伙伴可以多多支持小庄的文章哦 &#x1f4d2; 数据结构 &#x1f4d2; C 引言 : 上一篇博客我们了解了C入门语法的一部分&#xff0c;今天我们来了解函数重载&#xff0c;引用的技术&#xff0c;请放心食用 ~ 文章目录 一. &#x1f3e0; 函数重…

获取用户位置数据,IP定位离线库助您洞悉消费者需求

获取用户位置数据是现代互联网应用中非常重要的一环。通过获取用户的位置数据&#xff0c;可以了解用户所在的地理位置&#xff0c;从而更好地为用户提供个性化的服务和推荐。而IP归属地离线库就是一种非常有用的工具&#xff0c;可以帮助企业准确地获取用户的位置信息。 IP归…