一文介绍回归和分类的本质区别 !!

文章目录

前言

1、回归和分类的本质

(1)回归(Regression)的本质

(2)分类(Classification)的本质

2、回归和分类的原理

(1)回归(Regression)的原理

(2)分类(Classification)的原理

3、回归和分类的算法

(1)回归(Regression)的算法

(2)分类(Classification)的算法


前言

本文将从回归和分类的本质、回归和分类的原理、回归和分类的算法三个方面,详细介绍回归和分类 (Regression And Classification)。


1、回归和分类的本质

回归和分类是机器学习中两种基本的预测方法,它们的本质区别在于输出变量的类型。回归问题输出的是连续的数值,分类问题输出的是有限的、离散的类别标签。两者都是监督学习的一部分,都依赖于带有标签的训练数据来学习模型。

(1)回归(Regression)的本质

回归的目的是预测数值型的目标值,本质是寻找自变量和因变量之间的关系,以便能够预测新的、未知的数据点的输出值。例如,根据房屋的面积、位置等特征预测其价格(房价预测、股票价价格预测、温度预测等)。

回归的本质

  • 自变量个数:

        一元回归:只涉及一个自变量和一个因变量的回归分析。

        多元回归:涉及两个或更多个自变量和一个因变量的回归分析。

  • 自变量与因变量的关系:

        线性回归:自变量与因变量之间的关系被假定为线性的,即因变量是自变量的线性组合。

        非线性回归:自变量与因变量之间的关系是非线性的,这通常需要通过非线性模型来描述。

  • 因变量个数:

        简单回归:只有一个因变量的回归分析,无论自变量的数量如何。

        多重回归:涉及多个因变量的回归分析。在这种情况下,模型试图同时预测多个因变量的值。

(2)分类(Classification)的本质

分类的目的是预测标签型的目标值,本质是根据输入数据的特征将其划分到预定义的类别中。例如,根据图片的内容判断其所属的类别(猫、狗、花等)(邮件是否为垃圾邮件、疾病诊断的患病与否)。

分类的本质

  • 二分类(Binary Classification):

        表示分类任务中有两个类别。在二分类中,我们通常使用一些常见的算法来进行分类,如逻辑回归、支持向量机等。例如,我们想要识别一些图片是不是猫,这就是一个二分类问题,因为答案只有是或不是两种可能。

  • 多分类(Multi-Class Classification):

        表示分类任务中有多个类别。多分类是假设每个样本都被设置了一个且仅有一个标签:一个水果可以是苹果或者梨,但是同时不可能是两者。在多分类中,我们可以使用一些常见的算法来进行分类,如决策树、随机森林等。例如,对一堆水果图片进行分类,它们可能是橘子、苹果、梨等,这就是一个多分类问题。

  • 多标签分类(Multi-Label Classification):

        给每个样本一系列的目标标签,可以想象成一个数据点的各属性不是相互排斥的。多标签分类的方法分为两种,一种是将问题转化为传统的分类问题,二是调整现有的算法来适应多标签的分类。例如,一个文本可能被同时认为是宗教、政治、金融或者教育相关的话题,这就是一个多标签分类问题,因为一个文本可以同时有多个标签。

2、回归和分类的原理

线性回归 vs 逻辑回归

(1)回归(Regression)的原理

通过建立自变量和因变量之间的数字模型来探究它们之间的关系。

线性回归

线性回归(Linear Regression):求解权重(w)和偏置(b)的主要步骤。

求解权重(w)和偏置(b)

  • 初始化权重和偏置:为权重w和偏置b选择初始值,并准备训练数据x和标签y
  • 定义损失函数:选择一个损失函数(如均方误差)来衡量模型预测与实际值之间的差距。
  • 应用梯度下降算法:使用梯度下降算法迭代更新wb,以最小化损失函数,直到满足停止条件。

梯度下降算法迭代更新 w 和 b

  • 获取并验证最终参数:当算法收敛时,得到wb,并在验证集上检查模型性能。
  • 构建最终模型:使用最终的wb构建线性回归模型,用于新数据预测。

新数据预测

(2)分类(Classification)的原理

根据事物或概念的共同特征将其划分为同一类别,而将具有不同特征的事物或概念划分为不同类别。

逻辑回归

逻辑回归(Logistic Regression):通过sigmoid函数将线性回归结果映射为概率的二分类算法。

  • 特征工程:转换和增强原始特征以更好地表示问题。
  • 模型建立:构建逻辑回归模型,使用sigmoid函数将线性组合映射为概率。
  • 模型训练:通过优化算法(如梯度下降)最小化损失函数来训练模型。
  • 模型评估:使用验证集或测试集评估模型的性能。
  • 预测:应用训练好的模型对新数据进行分类预测。

猫狗识别

3、回归和分类的算法

(1)回归(Regression)的算法

主要用于预测数值型数据。

  1. 线性回归(Linear Regression):这是最基本和常见的回归算法,它假设因变量和自变量之间存在线性关系,并通过最小化预测值和实际值之间的平方差来拟合数据。
  2. 多项式回归(Polynomial Regression):当自变量和因变量之间的关系是线性的,可以使用多项式回归。它通过引入自变量的高次项来拟合数据,从而捕捉非线性关系。
  3. 决策树回归(Decision Tree Regression):决策树回归是一种基于树结构的回归方法,它通过构建决策树来划分数据空间,并在每个叶节点上拟合一个简单的模型(如常数或线性模型)。决策树回归易于理解和解释,能够处理非线性关系,并且对特征选择不敏感。
  4. 随机森林回归(Random Forest Regression):随机森林回归是一种集成学习方法,它通过构建多个决策树并将它们的预测结果组合起来来提高回归性能。随机森林回归能够处理高维数据和非线性关系,并且对噪声和异常值具有一定的鲁棒性。

(2)分类(Classification)的算法

主要用于发现类别规则并预测新数据的类别。

  1. 逻辑回归(Logistic Regression):尽管名字中有“回归”,但实际上逻辑回归是一种分类算法,常用于二分类问题。它通过逻辑函数将线性回归的输出映射到(0,1)之间,得到样本点属于某一类别的概率。在回归问题中,有时也使用逻辑回归来处理因变量是二元的情况,此时可以将问题看作是对概率的回归。
  2. 支持向量机(SVM):支持向量机是一种基于统计学习理论的分类算法。它通过寻找一个超平面来最大化不同类别之间的间隔,从而实现分类。SVM在高维空间和有限样本情况下表现出色,并且对于非线性问题也可以使用核函数进行扩展。
  3. K最近邻(KNN):K最近邻是一种基于实例的学习算法,它根据输入样本的K个最近邻样本的类别来确定输入样本的类别。KNN算法简单且无需训练阶段,但在处理大规模数据集时可能效率较低。
  4. 朴素贝叶斯分类器:朴素贝叶斯是一种基于贝叶斯定理的分类算法,它假设特征之间相互独立(即朴素假设)。尽管这个假设在实际应用中往往不成立,但朴素贝叶斯分类器在许多领域仍然表现出色,尤其是在文本分类和垃圾邮件过滤等方面。

参考:架构师带你玩转AI

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/297929.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

移动端基础

移动端基础 一.了解二.视口1.视口形式2.视口标签3.viewport设置 三.二倍图1.像素比2.多倍图3.背景缩放及使用(background-size)4.多倍图切图 四.移动端开发选择1.单独制作2.响应式3.总结 五.移动端技术解决方案1.初始化2.盒子模型3.特殊样式 六.常见布局…

记Kubernetes(k8s)初始化报错:“Error getting node“ err=“node \“k8s-master\“ not found“

记Kubernetes(k8s)初始化报错:"Error getting node" err"node \"k8s-master\" not found" 1、报错详情2、问题排查3、尝试问题解决 💖The Begin💖点点关注,收藏不迷路&#…

【数据库】数据库的介绍、分类、作用和特点,AI人工智能数据如何存储

欢迎来到《小5讲堂》,大家好,我是全栈小5。 这是《数据库》系列文章,每篇文章将以博主理解的角度展开讲解, 特别是针对知识点的概念进行叙说,大部分文章将会对这些概念进行实际例子验证,以此达到加深对知识…

【拓扑空间】示例及详解1

例1 度量空间的任意两球形邻域的交集是若干球形邻域的并集 Proof: 任取空间的两个球形邻域、,令 任取,令 球形领域 例2 规定X的子集族,证明是X上的一个拓扑 Proof: 1. 2., (若干个球形邻域的并集都是的元素,元素…

【数据结构(一)】初识数据结构

❣博主主页: 33的博客❣ ▶文章专栏分类: Java从入门到精通◀ 🚚我的代码仓库: 33的代码仓库🚚 🫵🫵🫵关注我带你学更多数据结构知识 目录 1.前言2.集合架构3.时间和空间复杂度3.1算法效率3.2时间复杂度3.2.1大O的渐进…

DFS:深搜+回溯+剪枝解决矩阵搜索问题

创作不易&#xff0c;感谢三连&#xff01;&#xff01; 一、N皇后 . - 力扣&#xff08;LeetCode&#xff09; class Solution { public:vector<vector<string>> ret;vector<string> path;bool checkcol[9];bool checkdig1[18];bool checkdig2[18];int n…

【C++】vector问题解决(非法的间接寻址,迭代器失效 , memcpy拷贝问题)

送给大家一句话&#xff1a; 世界在旋转&#xff0c;我们跌跌撞撞前进&#xff0c;这就够了 —— 阿贝尔 加缪 vector问题解决 1 前言2 迭代器区间拷贝3 迭代器失效问题4 memcpy拷贝问题 1 前言 我们之前实现了手搓vector&#xff0c;但是当时依然有些问题没有解决&#xff…

【Java笔记】多线程0:JVM线程是用户态还是内核态?Java 线程与OS线程的联系

文章目录 JVM线程是用户态线程还是内核态线程什么是用户态线程与内核态线程绿色线程绿色线程的缺点 线程映射稍微回顾下线程映射模型JVM线程映射 线程状态操作系统的线程状态JVM的线程状态JVM线程与OS线程的状态关系 Reference 今天复盘一下Java中&#xff0c;JVM线程与实际操作…

使用虚拟引擎为AR体验提供动力

Powering AR Experiences with Unreal Engine ​​​​​​​ 目录 1. 虚拟引擎概述 2. 虚拟引擎如何为AR体验提供动力 3. 虚拟引擎中AR体验的组成部分是什么&#xff1f; 4. 使用虚拟引擎创建AR体验 5. 虚拟引擎中AR的优化提示 6. 将互动性融入AR与虚拟引擎 7. 在AR中…

简述JMeter实现分布式并发及操作

为什么要分布式并发&#xff1f; JMeter性能实践过程中&#xff0c;一旦进行高并发操作时就会出现以下尴尬场景&#xff0c;JMeter客户端卡死、请求错误或是超时等&#xff0c;导致很难得出准确的性能测试结论。 目前知道的有两个方法可以解决JMeter支撑高并发&#xff1a; …

【Android Studio】上位机-安卓系统手机-蓝牙调试助手

【Android Studio】上位机-安卓系统手机-蓝牙调试助手 文章目录 前言AS官网一、手机配置二、移植工程三、配置四、BUG五、Java语言总结 前言 提示&#xff1a;以下是本篇文章正文内容&#xff0c;下面案例可供参考 AS官网 AS官网 一、手机配置 Android Studio 下真机调试 …

Rust egui(4) 增加自己的tab页面

如下图&#xff0c;增加一个Sins也面&#xff0c;里面添加一个配置组为Sin Paraemters&#xff0c;里面包含一个nums的参数&#xff0c;范围是1-1024&#xff0c;根据nums的数量&#xff0c;在Panel中画sin函数的line。 demo见&#xff1a;https://crazyskady.github.io/index.…

Spring Boot 介绍

1、SpringBoot 介绍 用通俗的话讲&#xff0c;SpringBoot 在Spring生态基础上发展而来&#xff0c;它的发现不是取代Spring&#xff0c;是为了让人们更容易使用Spring。 2、相关依赖关系 Spring IOC/AOP > Spring > Spring Boot > Spring Cloud 3、 SpringBoot工作原…

ENSP中AC登录web界面

拓扑 虚拟网卡配置 云团配置&#xff1a; **AC配置** vlan batch 100 # interface GigabitEthernet0/0/1port link-type accessport default vlan 100 # interface Vlanif100ip address 192.168.0.1 255.255.255.0 #http server enable浏览器输入&#xff1a;http://192.168.…

前端 - 基础 表单标签 - 表单元素 input - type 属性 ( 单选按钮和复选按钮 )

input 标签 type 属性 &#xff0c;上一篇讲了 输入框 和 密码框 这节看看 单选按钮 和 复选 按钮 目录 单选按钮 &#xff1a; 复选按钮 # 看上图就可以看到 单选按钮 -- radio 和 复选 按钮 -- checkbox 单选按钮 &#xff1a; 所谓单选按钮就是 有时…

某音乐平台歌曲信息逆向之参数寻找

如何逆向加密参数&#xff1a;某音乐平台歌曲信息逆向之webpack扣取-CSDN博客 参数构建 {"comm": {"cv": 4747474,"ct": 24,"format": "json","inCharset": "utf-8","outCharset": "ut…

HTML:框架

案例&#xff1a; <frameset cols"5%,*" ><frame src"left_frame.html"><frame src"right_frame.html"> </frameset> 一、<frameset>标签 <frameset>标签&#xff1a;称为框架标记&#xff0c;将一个HTML…

动态规划详解(Dynamic Programming)

目录 引入什么是动态规划&#xff1f;动态规划的特点解题办法解题套路框架举例说明斐波那契数列题目描述解题思路方式一&#xff1a;暴力求解思考 方式二&#xff1a;带备忘录的递归解法方式三&#xff1a;动态规划 推荐练手题目 引入 动态规划问题&#xff08;Dynamic Progra…

基于SpringBoot的“数码论坛系统设计与实现”的设计与实现(源码+数据库+文档+PPT)

基于SpringBoot的“数码论坛系统设计与实现”的设计与实现&#xff08;源码数据库文档PPT) 开发语言&#xff1a;Java 数据库&#xff1a;MySQL 技术&#xff1a;SpringBoot 工具&#xff1a;IDEA/Ecilpse、Navicat、Maven 系统展示 系统总体结构图 系统首页界面图 数码板…

一次java.lang.NullPointerException的排查之旅

一次java.lang.NullPointerException的排查之旅 问题由来问题分析问题处理 问题由来 最近在项目中遇到了一个比较奇怪的java.lang.NullPointerException&#xff0c;就是说在自己的本地环境中&#xff0c;功能正常&#xff0c;运行无异常。但是测试环境点击同样的功能时却总是…