政安晨:【Keras机器学习实践要点】(二十一)—— MobileViT:基于变换器的移动友好图像分类模型

目录

简介

导入

超参数

MobileViT 实用程序


政安晨的个人主页政安晨

欢迎 👍点赞✍评论⭐收藏

收录专栏: TensorFlow与Keras机器学习实战

希望政安晨的博客能够对您有所裨益,如有不足之处,欢迎在评论区提出指正!

本文目标:MobileViT 利用卷积和变换器的综合优势进行图像分类。

简介


在本示例中,我们实现了 MobileViT 架构(Mehta 等人),该架构结合了 Transformers(Vaswani 等人)和卷积的优点。通过变换器,我们可以捕捉长距离依赖关系,从而实现全局表示。通过卷积,我们可以捕捉空间关系,从而建立局部模型。

除了结合变换器和卷积的特性,作者还介绍了 MobileViT,将其作为通用的移动友好骨干,用于不同的图像识别任务。他们的研究结果表明,从性能上看,MobileViT 优于其他具有相同或更高复杂度的模型(例如 MobileNetV3),同时在移动设备上也很高效。

注:本示例应在 Tensorflow 2.13 及更高版本上运行。

导入

import os
import tensorflow as tfos.environ["KERAS_BACKEND"] = "tensorflow"import keras
from keras import layers
from keras import backendimport tensorflow_datasets as tfdstfds.disable_progress_bar()

超参数

# Values are from table 4.
patch_size = 4  # 2x2, for the Transformer blocks.
image_size = 256
expansion_factor = 2  # expansion factor for the MobileNetV2 blocks.

MobileViT 实用程序

MobileViT 架构由以下模块组成:

处理输入图像的阶梯式 3x3 卷积。
MobileNetV2 风格的反转残差块,用于降低中间特征图的分辨率。
MobileViT 块,结合了变换器和卷积的优势。

如下图所示(摘自论文原文):

def conv_block(x, filters=16, kernel_size=3, strides=2):conv_layer = layers.Conv2D(filters,kernel_size,strides=strides,activation=keras.activations.swish,padding="same",)return conv_layer(x)# Reference: https://github.com/keras-team/keras/blob/e3858739d178fe16a0c77ce7fab88b0be6dbbdc7/keras/applications/imagenet_utils.py#L413C17-L435def correct_pad(inputs, kernel_size):img_dim = 2 if backend.image_data_format() == "channels_first" else 1input_size = inputs.shape[img_dim : (img_dim + 2)]if isinstance(kernel_size, int):kernel_size = (kernel_size, kernel_size)if input_size[0] is None:adjust = (1, 1)else:adjust = (1 - input_size[0] % 2, 1 - input_size[1] % 2)correct = (kernel_size[0] // 2, kernel_size[1] // 2)return ((correct[0] - adjust[0], correct[0]),(correct[1] - adjust[1], correct[1]),)# Reference: https://git.io/JKgtCdef inverted_residual_block(x, expanded_channels, output_channels, strides=1):m = layers.Conv2D(expanded_channels, 1, padding="same", use_bias=False)(x)m = layers.BatchNormalization()(m)m = keras.activations.swish(m)if strides == 2:m = layers.ZeroPadding2D(padding=correct_pad(m, 3))(m)m = layers.DepthwiseConv2D(3, strides=strides, padding="same" if strides == 1 else "valid", use_bias=False)(m)m = layers.BatchNormalization()(m)m = keras.activations.swish(m)m = layers.Conv2D(output_channels, 1, padding="same", use_bias=False)(m)m = layers.BatchNormalization()(m)if keras.ops.equal(x.shape[-1], output_channels) and strides == 1:return layers.Add()([m, x])return m# Reference:
# https://keras.io/examples/vision/image_classification_with_vision_transformer/def mlp(x, hidden_units, dropout_rate):for units in hidden_units:x = layers.Dense(units, activation=keras.activations.swish)(x)x = layers.Dropout(dropout_rate)(x)return xdef transformer_block(x, transformer_layers, projection_dim, num_heads=2):for _ in range(transformer_layers):# Layer normalization 1.x1 = layers.LayerNormalization(epsilon=1e-6)(x)# Create a multi-head attention layer.attention_output = layers.MultiHeadAttention(num_heads=num_heads, key_dim=projection_dim, dropout=0.1)(x1, x1)# Skip connection 1.x2 = layers.Add()([attention_output, x])# Layer normalization 2.x3 = layers.LayerNormalization(epsilon=1e-6)(x2)# MLP.x3 = mlp(x3,hidden_units=[x.shape[-1] * 2, x.shape[-1]],dropout_rate=0.1,)# Skip connection 2.x = layers.Add()([x3, x2])return xdef mobilevit_block(x, num_blocks, projection_dim, strides=1):# Local projection with convolutions.local_features = conv_block(x, filters=projection_dim, strides=strides)local_features = conv_block(local_features, filters=projection_dim, kernel_size=1, strides=strides)# Unfold into patches and then pass through Transformers.num_patches = int((local_features.shape[1] * local_features.shape[2]) / patch_size)non_overlapping_patches = layers.Reshape((patch_size, num_patches, projection_dim))(local_features)global_features = transformer_block(non_overlapping_patches, num_blocks, projection_dim)# Fold into conv-like feature-maps.folded_feature_map = layers.Reshape((*local_features.shape[1:-1], projection_dim))(global_features)# Apply point-wise conv -> concatenate with the input features.folded_feature_map = conv_block(folded_feature_map, filters=x.shape[-1], kernel_size=1, strides=strides)local_global_features = layers.Concatenate(axis=-1)([x, folded_feature_map])# Fuse the local and global features using a convoluion layer.local_global_features = conv_block(local_global_features, filters=projection_dim, strides=strides)return local_global_features

更多关于 MobileViT 区块的信息:

首先,特征表示(A)要经过卷积块,以捕捉局部关系。这里单个条目的预期形状是(h, w, num_channels)。
然后,它们会被展开成另一个形状为(p, n, num_channels)的向量,其中 p 是一个小块的面积,n 是(h * w)/p。展开后的矢量会经过一个变换器模块,以捕捉补丁之间的全局关系。

输出向量(B)再次被折叠成一个形状(h、w、num_channels)类似于卷积产生的特征图的向量
然后,向量 A 和 B 再经过两个卷积层,将局部和全局表征融合在一起请注意,此时最终向量的空间分辨率保持不变。作者还解释了 MobileViT 块如何与 CNN 的卷积块相似。

更多详情,请参阅原始论文。

接下来,我们将这些模块组合在一起,实现 MobileViT 架构(XXS 变体)。

def create_mobilevit(num_classes=5):inputs = keras.Input((image_size, image_size, 3))x = layers.Rescaling(scale=1.0 / 255)(inputs)# Initial conv-stem -> MV2 block.x = conv_block(x, filters=16)x = inverted_residual_block(x, expanded_channels=16 * expansion_factor, output_channels=16)# Downsampling with MV2 block.x = inverted_residual_block(x, expanded_channels=16 * expansion_factor, output_channels=24, strides=2)x = inverted_residual_block(x, expanded_channels=24 * expansion_factor, output_channels=24)x = inverted_residual_block(x, expanded_channels=24 * expansion_factor, output_channels=24)# First MV2 -> MobileViT block.x = inverted_residual_block(x, expanded_channels=24 * expansion_factor, output_channels=48, strides=2)x = mobilevit_block(x, num_blocks=2, projection_dim=64)# Second MV2 -> MobileViT block.x = inverted_residual_block(x, expanded_channels=64 * expansion_factor, output_channels=64, strides=2)x = mobilevit_block(x, num_blocks=4, projection_dim=80)# Third MV2 -> MobileViT block.x = inverted_residual_block(x, expanded_channels=80 * expansion_factor, output_channels=80, strides=2)x = mobilevit_block(x, num_blocks=3, projection_dim=96)x = conv_block(x, filters=320, kernel_size=1, strides=1)# Classification head.x = layers.GlobalAvgPool2D()(x)outputs = layers.Dense(num_classes, activation="softmax")(x)return keras.Model(inputs, outputs)mobilevit_xxs = create_mobilevit()
mobilevit_xxs.summary()

演绎如下:
 

Model: "model"
__________________________________________________________________________________________________
Layer (type)                    Output Shape         Param #     Connected to                     
==================================================================================================
input_1 (InputLayer)            [(None, 256, 256, 3) 0                                            
__________________________________________________________________________________________________
rescaling (Rescaling)           (None, 256, 256, 3)  0           input_1[0][0]                    
__________________________________________________________________________________________________
conv2d (Conv2D)                 (None, 128, 128, 16) 448         rescaling[0][0]                  
__________________________________________________________________________________________________
conv2d_1 (Conv2D)               (None, 128, 128, 32) 512         conv2d[0][0]                     
__________________________________________________________________________________________________
batch_normalization (BatchNorma (None, 128, 128, 32) 128         conv2d_1[0][0]                   
__________________________________________________________________________________________________
tf.nn.silu (TFOpLambda)         (None, 128, 128, 32) 0           batch_normalization[0][0]        
__________________________________________________________________________________________________
depthwise_conv2d (DepthwiseConv (None, 128, 128, 32) 288         tf.nn.silu[0][0]                 
__________________________________________________________________________________________________
batch_normalization_1 (BatchNor (None, 128, 128, 32) 128         depthwise_conv2d[0][0]           
__________________________________________________________________________________________________
tf.nn.silu_1 (TFOpLambda)       (None, 128, 128, 32) 0           batch_normalization_1[0][0]      
__________________________________________________________________________________________________
conv2d_2 (Conv2D)               (None, 128, 128, 16) 512         tf.nn.silu_1[0][0]               
__________________________________________________________________________________________________
batch_normalization_2 (BatchNor (None, 128, 128, 16) 64          conv2d_2[0][0]                   
__________________________________________________________________________________________________
add (Add)                       (None, 128, 128, 16) 0           batch_normalization_2[0][0]      conv2d[0][0]                     
__________________________________________________________________________________________________
conv2d_3 (Conv2D)               (None, 128, 128, 32) 512         add[0][0]                        
__________________________________________________________________________________________________
batch_normalization_3 (BatchNor (None, 128, 128, 32) 128         conv2d_3[0][0]                   
__________________________________________________________________________________________________
tf.nn.silu_2 (TFOpLambda)       (None, 128, 128, 32) 0           batch_normalization_3[0][0]      
__________________________________________________________________________________________________
zero_padding2d (ZeroPadding2D)  (None, 129, 129, 32) 0           tf.nn.silu_2[0][0]               
__________________________________________________________________________________________________
depthwise_conv2d_1 (DepthwiseCo (None, 64, 64, 32)   288         zero_padding2d[0][0]             
__________________________________________________________________________________________________
batch_normalization_4 (BatchNor (None, 64, 64, 32)   128         depthwise_conv2d_1[0][0]         
__________________________________________________________________________________________________
tf.nn.silu_3 (TFOpLambda)       (None, 64, 64, 32)   0           batch_normalization_4[0][0]      
__________________________________________________________________________________________________
conv2d_4 (Conv2D)               (None, 64, 64, 24)   768         tf.nn.silu_3[0][0]               
__________________________________________________________________________________________________
batch_normalization_5 (BatchNor (None, 64, 64, 24)   96          conv2d_4[0][0]                   
__________________________________________________________________________________________________
conv2d_5 (Conv2D)               (None, 64, 64, 48)   1152        batch_normalization_5[0][0]      
__________________________________________________________________________________________________
batch_normalization_6 (BatchNor (None, 64, 64, 48)   192         conv2d_5[0][0]                   
__________________________________________________________________________________________________
tf.nn.silu_4 (TFOpLambda)       (None, 64, 64, 48)   0           batch_normalization_6[0][0]      
__________________________________________________________________________________________________
depthwise_conv2d_2 (DepthwiseCo (None, 64, 64, 48)   432         tf.nn.silu_4[0][0]               
__________________________________________________________________________________________________
batch_normalization_7 (BatchNor (None, 64, 64, 48)   192         depthwise_conv2d_2[0][0]         
__________________________________________________________________________________________________
tf.nn.silu_5 (TFOpLambda)       (None, 64, 64, 48)   0           batch_normalization_7[0][0]      
__________________________________________________________________________________________________
conv2d_6 (Conv2D)               (None, 64, 64, 24)   1152        tf.nn.silu_5[0][0]               
__________________________________________________________________________________________________
batch_normalization_8 (BatchNor (None, 64, 64, 24)   96          conv2d_6[0][0]                   
__________________________________________________________________________________________________
add_1 (Add)                     (None, 64, 64, 24)   0           batch_normalization_8[0][0]      batch_normalization_5[0][0]      
__________________________________________________________________________________________________
conv2d_7 (Conv2D)               (None, 64, 64, 48)   1152        add_1[0][0]                      
__________________________________________________________________________________________________
batch_normalization_9 (BatchNor (None, 64, 64, 48)   192         conv2d_7[0][0]                   
__________________________________________________________________________________________________
tf.nn.silu_6 (TFOpLambda)       (None, 64, 64, 48)   0           batch_normalization_9[0][0]      
__________________________________________________________________________________________________
depthwise_conv2d_3 (DepthwiseCo (None, 64, 64, 48)   432         tf.nn.silu_6[0][0]               
__________________________________________________________________________________________________
batch_normalization_10 (BatchNo (None, 64, 64, 48)   192         depthwise_conv2d_3[0][0]         
__________________________________________________________________________________________________
tf.nn.silu_7 (TFOpLambda)       (None, 64, 64, 48)   0           batch_normalization_10[0][0]     
__________________________________________________________________________________________________
conv2d_8 (Conv2D)               (None, 64, 64, 24)   1152        tf.nn.silu_7[0][0]               
__________________________________________________________________________________________________
batch_normalization_11 (BatchNo (None, 64, 64, 24)   96          conv2d_8[0][0]                   
__________________________________________________________________________________________________
add_2 (Add)                     (None, 64, 64, 24)   0           batch_normalization_11[0][0]     add_1[0][0]                      
__________________________________________________________________________________________________
conv2d_9 (Conv2D)               (None, 64, 64, 48)   1152        add_2[0][0]                      
__________________________________________________________________________________________________
batch_normalization_12 (BatchNo (None, 64, 64, 48)   192         conv2d_9[0][0]                   
__________________________________________________________________________________________________
tf.nn.silu_8 (TFOpLambda)       (None, 64, 64, 48)   0           batch_normalization_12[0][0]     
__________________________________________________________________________________________________
zero_padding2d_1 (ZeroPadding2D (None, 65, 65, 48)   0           tf.nn.silu_8[0][0]               
__________________________________________________________________________________________________
depthwise_conv2d_4 (DepthwiseCo (None, 32, 32, 48)   432         zero_padding2d_1[0][0]           
__________________________________________________________________________________________________
batch_normalization_13 (BatchNo (None, 32, 32, 48)   192         depthwise_conv2d_4[0][0]         
__________________________________________________________________________________________________
tf.nn.silu_9 (TFOpLambda)       (None, 32, 32, 48)   0           batch_normalization_13[0][0]     
__________________________________________________________________________________________________
conv2d_10 (Conv2D)              (None, 32, 32, 48)   2304        tf.nn.silu_9[0][0]               
__________________________________________________________________________________________________
batch_normalization_14 (BatchNo (None, 32, 32, 48)   192         conv2d_10[0][0]                  
__________________________________________________________________________________________________
conv2d_11 (Conv2D)              (None, 32, 32, 64)   27712       batch_normalization_14[0][0]     
__________________________________________________________________________________________________
conv2d_12 (Conv2D)              (None, 32, 32, 64)   4160        conv2d_11[0][0]                  
__________________________________________________________________________________________________
reshape (Reshape)               (None, 4, 256, 64)   0           conv2d_12[0][0]                  
__________________________________________________________________________________________________
layer_normalization (LayerNorma (None, 4, 256, 64)   128         reshape[0][0]                    
__________________________________________________________________________________________________
multi_head_attention (MultiHead (None, 4, 256, 64)   33216       layer_normalization[0][0]        layer_normalization[0][0]        
__________________________________________________________________________________________________
add_3 (Add)                     (None, 4, 256, 64)   0           multi_head_attention[0][0]       reshape[0][0]                    
__________________________________________________________________________________________________
layer_normalization_1 (LayerNor (None, 4, 256, 64)   128         add_3[0][0]                      
__________________________________________________________________________________________________
dense (Dense)                   (None, 4, 256, 128)  8320        layer_normalization_1[0][0]      
__________________________________________________________________________________________________
dropout (Dropout)               (None, 4, 256, 128)  0           dense[0][0]                      
__________________________________________________________________________________________________
dense_1 (Dense)                 (None, 4, 256, 64)   8256        dropout[0][0]                    
__________________________________________________________________________________________________
dropout_1 (Dropout)             (None, 4, 256, 64)   0           dense_1[0][0]                    
__________________________________________________________________________________________________
add_4 (Add)                     (None, 4, 256, 64)   0           dropout_1[0][0]                  add_3[0][0]                      
__________________________________________________________________________________________________
layer_normalization_2 (LayerNor (None, 4, 256, 64)   128         add_4[0][0]                      
__________________________________________________________________________________________________
multi_head_attention_1 (MultiHe (None, 4, 256, 64)   33216       layer_normalization_2[0][0]      layer_normalization_2[0][0]      
__________________________________________________________________________________________________
add_5 (Add)                     (None, 4, 256, 64)   0           multi_head_attention_1[0][0]     add_4[0][0]                      
__________________________________________________________________________________________________
layer_normalization_3 (LayerNor (None, 4, 256, 64)   128         add_5[0][0]                      
__________________________________________________________________________________________________
dense_2 (Dense)                 (None, 4, 256, 128)  8320        layer_normalization_3[0][0]      
__________________________________________________________________________________________________
dropout_2 (Dropout)             (None, 4, 256, 128)  0           dense_2[0][0]                    
__________________________________________________________________________________________________
dense_3 (Dense)                 (None, 4, 256, 64)   8256        dropout_2[0][0]                  
__________________________________________________________________________________________________
dropout_3 (Dropout)             (None, 4, 256, 64)   0           dense_3[0][0]                    
__________________________________________________________________________________________________
add_6 (Add)                     (None, 4, 256, 64)   0           dropout_3[0][0]                  add_5[0][0]                      
__________________________________________________________________________________________________
reshape_1 (Reshape)             (None, 32, 32, 64)   0           add_6[0][0]                      
__________________________________________________________________________________________________
conv2d_13 (Conv2D)              (None, 32, 32, 48)   3120        reshape_1[0][0]                  
__________________________________________________________________________________________________
concatenate (Concatenate)       (None, 32, 32, 96)   0           batch_normalization_14[0][0]     conv2d_13[0][0]                  
__________________________________________________________________________________________________
conv2d_14 (Conv2D)              (None, 32, 32, 64)   55360       concatenate[0][0]                
__________________________________________________________________________________________________
conv2d_15 (Conv2D)              (None, 32, 32, 128)  8192        conv2d_14[0][0]                  
__________________________________________________________________________________________________
batch_normalization_15 (BatchNo (None, 32, 32, 128)  512         conv2d_15[0][0]                  
__________________________________________________________________________________________________
tf.nn.silu_10 (TFOpLambda)      (None, 32, 32, 128)  0           batch_normalization_15[0][0]     
__________________________________________________________________________________________________
zero_padding2d_2 (ZeroPadding2D (None, 33, 33, 128)  0           tf.nn.silu_10[0][0]              
__________________________________________________________________________________________________
depthwise_conv2d_5 (DepthwiseCo (None, 16, 16, 128)  1152        zero_padding2d_2[0][0]           
__________________________________________________________________________________________________
batch_normalization_16 (BatchNo (None, 16, 16, 128)  512         depthwise_conv2d_5[0][0]         
__________________________________________________________________________________________________
tf.nn.silu_11 (TFOpLambda)      (None, 16, 16, 128)  0           batch_normalization_16[0][0]     
__________________________________________________________________________________________________
conv2d_16 (Conv2D)              (None, 16, 16, 64)   8192        tf.nn.silu_11[0][0]              
__________________________________________________________________________________________________
batch_normalization_17 (BatchNo (None, 16, 16, 64)   256         conv2d_16[0][0]                  
__________________________________________________________________________________________________
conv2d_17 (Conv2D)              (None, 16, 16, 80)   46160       batch_normalization_17[0][0]     
__________________________________________________________________________________________________
conv2d_18 (Conv2D)              (None, 16, 16, 80)   6480        conv2d_17[0][0]                  
__________________________________________________________________________________________________
reshape_2 (Reshape)             (None, 4, 64, 80)    0           conv2d_18[0][0]                  
__________________________________________________________________________________________________
layer_normalization_4 (LayerNor (None, 4, 64, 80)    160         reshape_2[0][0]                  
__________________________________________________________________________________________________
multi_head_attention_2 (MultiHe (None, 4, 64, 80)    51760       layer_normalization_4[0][0]      layer_normalization_4[0][0]      
__________________________________________________________________________________________________
add_7 (Add)                     (None, 4, 64, 80)    0           multi_head_attention_2[0][0]     reshape_2[0][0]                  
__________________________________________________________________________________________________
layer_normalization_5 (LayerNor (None, 4, 64, 80)    160         add_7[0][0]                      
__________________________________________________________________________________________________
dense_4 (Dense)                 (None, 4, 64, 160)   12960       layer_normalization_5[0][0]      
__________________________________________________________________________________________________
dropout_4 (Dropout)             (None, 4, 64, 160)   0           dense_4[0][0]                    
__________________________________________________________________________________________________
dense_5 (Dense)                 (None, 4, 64, 80)    12880       dropout_4[0][0]                  
__________________________________________________________________________________________________
dropout_5 (Dropout)             (None, 4, 64, 80)    0           dense_5[0][0]                    
__________________________________________________________________________________________________
add_8 (Add)                     (None, 4, 64, 80)    0           dropout_5[0][0]                  add_7[0][0]                      
__________________________________________________________________________________________________
layer_normalization_6 (LayerNor (None, 4, 64, 80)    160         add_8[0][0]                      
__________________________________________________________________________________________________
multi_head_attention_3 (MultiHe (None, 4, 64, 80)    51760       layer_normalization_6[0][0]      layer_normalization_6[0][0]      
__________________________________________________________________________________________________
add_9 (Add)                     (None, 4, 64, 80)    0           multi_head_attention_3[0][0]     add_8[0][0]                      
__________________________________________________________________________________________________
layer_normalization_7 (LayerNor (None, 4, 64, 80)    160         add_9[0][0]                      
__________________________________________________________________________________________________
dense_6 (Dense)                 (None, 4, 64, 160)   12960       layer_normalization_7[0][0]      
__________________________________________________________________________________________________
dropout_6 (Dropout)             (None, 4, 64, 160)   0           dense_6[0][0]                    
__________________________________________________________________________________________________
dense_7 (Dense)                 (None, 4, 64, 80)    12880       dropout_6[0][0]                  
__________________________________________________________________________________________________
dropout_7 (Dropout)             (None, 4, 64, 80)    0           dense_7[0][0]                    
__________________________________________________________________________________________________
add_10 (Add)                    (None, 4, 64, 80)    0           dropout_7[0][0]                  add_9[0][0]                      
__________________________________________________________________________________________________
layer_normalization_8 (LayerNor (None, 4, 64, 80)    160         add_10[0][0]                     
__________________________________________________________________________________________________
multi_head_attention_4 (MultiHe (None, 4, 64, 80)    51760       layer_normalization_8[0][0]      layer_normalization_8[0][0]      
__________________________________________________________________________________________________
add_11 (Add)                    (None, 4, 64, 80)    0           multi_head_attention_4[0][0]     add_10[0][0]                     
__________________________________________________________________________________________________
layer_normalization_9 (LayerNor (None, 4, 64, 80)    160         add_11[0][0]                     
__________________________________________________________________________________________________
dense_8 (Dense)                 (None, 4, 64, 160)   12960       layer_normalization_9[0][0]      
__________________________________________________________________________________________________
dropout_8 (Dropout)             (None, 4, 64, 160)   0           dense_8[0][0]                    
__________________________________________________________________________________________________
dense_9 (Dense)                 (None, 4, 64, 80)    12880       dropout_8[0][0]                  
__________________________________________________________________________________________________
dropout_9 (Dropout)             (None, 4, 64, 80)    0           dense_9[0][0]                    
__________________________________________________________________________________________________
add_12 (Add)                    (None, 4, 64, 80)    0           dropout_9[0][0]                  add_11[0][0]                     
__________________________________________________________________________________________________
layer_normalization_10 (LayerNo (None, 4, 64, 80)    160         add_12[0][0]                     
__________________________________________________________________________________________________
multi_head_attention_5 (MultiHe (None, 4, 64, 80)    51760       layer_normalization_10[0][0]     layer_normalization_10[0][0]     
__________________________________________________________________________________________________
add_13 (Add)                    (None, 4, 64, 80)    0           multi_head_attention_5[0][0]     add_12[0][0]                     
__________________________________________________________________________________________________
layer_normalization_11 (LayerNo (None, 4, 64, 80)    160         add_13[0][0]                     
__________________________________________________________________________________________________
dense_10 (Dense)                (None, 4, 64, 160)   12960       layer_normalization_11[0][0]     
__________________________________________________________________________________________________
dropout_10 (Dropout)            (None, 4, 64, 160)   0           dense_10[0][0]                   
__________________________________________________________________________________________________
dense_11 (Dense)                (None, 4, 64, 80)    12880       dropout_10[0][0]                 
__________________________________________________________________________________________________
dropout_11 (Dropout)            (None, 4, 64, 80)    0           dense_11[0][0]                   
__________________________________________________________________________________________________
add_14 (Add)                    (None, 4, 64, 80)    0           dropout_11[0][0]                 add_13[0][0]                     
__________________________________________________________________________________________________
reshape_3 (Reshape)             (None, 16, 16, 80)   0           add_14[0][0]                     
__________________________________________________________________________________________________
conv2d_19 (Conv2D)              (None, 16, 16, 64)   5184        reshape_3[0][0]                  
__________________________________________________________________________________________________
concatenate_1 (Concatenate)     (None, 16, 16, 128)  0           batch_normalization_17[0][0]     conv2d_19[0][0]                  
__________________________________________________________________________________________________
conv2d_20 (Conv2D)              (None, 16, 16, 80)   92240       concatenate_1[0][0]              
__________________________________________________________________________________________________
conv2d_21 (Conv2D)              (None, 16, 16, 160)  12800       conv2d_20[0][0]                  
__________________________________________________________________________________________________
batch_normalization_18 (BatchNo (None, 16, 16, 160)  640         conv2d_21[0][0]                  
__________________________________________________________________________________________________
tf.nn.silu_12 (TFOpLambda)      (None, 16, 16, 160)  0           batch_normalization_18[0][0]     
__________________________________________________________________________________________________
zero_padding2d_3 (ZeroPadding2D (None, 17, 17, 160)  0           tf.nn.silu_12[0][0]              
__________________________________________________________________________________________________
depthwise_conv2d_6 (DepthwiseCo (None, 8, 8, 160)    1440        zero_padding2d_3[0][0]           
__________________________________________________________________________________________________
batch_normalization_19 (BatchNo (None, 8, 8, 160)    640         depthwise_conv2d_6[0][0]         
__________________________________________________________________________________________________
tf.nn.silu_13 (TFOpLambda)      (None, 8, 8, 160)    0           batch_normalization_19[0][0]     
__________________________________________________________________________________________________
conv2d_22 (Conv2D)              (None, 8, 8, 80)     12800       tf.nn.silu_13[0][0]              
__________________________________________________________________________________________________
batch_normalization_20 (BatchNo (None, 8, 8, 80)     320         conv2d_22[0][0]                  
__________________________________________________________________________________________________
conv2d_23 (Conv2D)              (None, 8, 8, 96)     69216       batch_normalization_20[0][0]     
__________________________________________________________________________________________________
conv2d_24 (Conv2D)              (None, 8, 8, 96)     9312        conv2d_23[0][0]                  
__________________________________________________________________________________________________
reshape_4 (Reshape)             (None, 4, 16, 96)    0           conv2d_24[0][0]                  
__________________________________________________________________________________________________
layer_normalization_12 (LayerNo (None, 4, 16, 96)    192         reshape_4[0][0]                  
__________________________________________________________________________________________________
multi_head_attention_6 (MultiHe (None, 4, 16, 96)    74400       layer_normalization_12[0][0]     layer_normalization_12[0][0]     
__________________________________________________________________________________________________
add_15 (Add)                    (None, 4, 16, 96)    0           multi_head_attention_6[0][0]     reshape_4[0][0]                  
__________________________________________________________________________________________________
layer_normalization_13 (LayerNo (None, 4, 16, 96)    192         add_15[0][0]                     
__________________________________________________________________________________________________
dense_12 (Dense)                (None, 4, 16, 192)   18624       layer_normalization_13[0][0]     
__________________________________________________________________________________________________
dropout_12 (Dropout)            (None, 4, 16, 192)   0           dense_12[0][0]                   
__________________________________________________________________________________________________
dense_13 (Dense)                (None, 4, 16, 96)    18528       dropout_12[0][0]                 
__________________________________________________________________________________________________
dropout_13 (Dropout)            (None, 4, 16, 96)    0           dense_13[0][0]                   
__________________________________________________________________________________________________
add_16 (Add)                    (None, 4, 16, 96)    0           dropout_13[0][0]                 add_15[0][0]                     
__________________________________________________________________________________________________
layer_normalization_14 (LayerNo (None, 4, 16, 96)    192         add_16[0][0]                     
__________________________________________________________________________________________________
multi_head_attention_7 (MultiHe (None, 4, 16, 96)    74400       layer_normalization_14[0][0]     layer_normalization_14[0][0]     
__________________________________________________________________________________________________
add_17 (Add)                    (None, 4, 16, 96)    0           multi_head_attention_7[0][0]     add_16[0][0]                     
__________________________________________________________________________________________________
layer_normalization_15 (LayerNo (None, 4, 16, 96)    192         add_17[0][0]                     
__________________________________________________________________________________________________
dense_14 (Dense)                (None, 4, 16, 192)   18624       layer_normalization_15[0][0]     
__________________________________________________________________________________________________
dropout_14 (Dropout)            (None, 4, 16, 192)   0           dense_14[0][0]                   
__________________________________________________________________________________________________
dense_15 (Dense)                (None, 4, 16, 96)    18528       dropout_14[0][0]                 
__________________________________________________________________________________________________
dropout_15 (Dropout)            (None, 4, 16, 96)    0           dense_15[0][0]                   
__________________________________________________________________________________________________
add_18 (Add)                    (None, 4, 16, 96)    0           dropout_15[0][0]                 add_17[0][0]                     
__________________________________________________________________________________________________
layer_normalization_16 (LayerNo (None, 4, 16, 96)    192         add_18[0][0]                     
__________________________________________________________________________________________________
multi_head_attention_8 (MultiHe (None, 4, 16, 96)    74400       layer_normalization_16[0][0]     layer_normalization_16[0][0]     
__________________________________________________________________________________________________
add_19 (Add)                    (None, 4, 16, 96)    0           multi_head_attention_8[0][0]     add_18[0][0]                     
__________________________________________________________________________________________________
layer_normalization_17 (LayerNo (None, 4, 16, 96)    192         add_19[0][0]                     
__________________________________________________________________________________________________
dense_16 (Dense)                (None, 4, 16, 192)   18624       layer_normalization_17[0][0]     
__________________________________________________________________________________________________
dropout_16 (Dropout)            (None, 4, 16, 192)   0           dense_16[0][0]                   
__________________________________________________________________________________________________
dense_17 (Dense)                (None, 4, 16, 96)    18528       dropout_16[0][0]                 
__________________________________________________________________________________________________
dropout_17 (Dropout)            (None, 4, 16, 96)    0           dense_17[0][0]                   
__________________________________________________________________________________________________
add_20 (Add)                    (None, 4, 16, 96)    0           dropout_17[0][0]                 add_19[0][0]                     
__________________________________________________________________________________________________
reshape_5 (Reshape)             (None, 8, 8, 96)     0           add_20[0][0]                     
__________________________________________________________________________________________________
conv2d_25 (Conv2D)              (None, 8, 8, 80)     7760        reshape_5[0][0]                  
__________________________________________________________________________________________________
concatenate_2 (Concatenate)     (None, 8, 8, 160)    0           batch_normalization_20[0][0]     conv2d_25[0][0]                  
__________________________________________________________________________________________________
conv2d_26 (Conv2D)              (None, 8, 8, 96)     138336      concatenate_2[0][0]              
__________________________________________________________________________________________________
conv2d_27 (Conv2D)              (None, 8, 8, 320)    31040       conv2d_26[0][0]                  
__________________________________________________________________________________________________
global_average_pooling2d (Globa (None, 320)          0           conv2d_27[0][0]                  
__________________________________________________________________________________________________
dense_18 (Dense)                (None, 5)            1605        global_average_pooling2d[0][0]   
==================================================================================================
Total params: 1,307,621
Trainable params: 1,305,077
Non-trainable params: 2,544
__________________________________________________________________________________________________---
## Dataset preparationWe will be using the
[`tf_flowers`](https://www.tensorflow.org/datasets/catalog/tf_flowers)
dataset to demonstrate the model. Unlike other Transformer-based architectures,
MobileViT uses a simple augmentation pipeline primarily because it has the properties
of a CNN.```python
batch_size = 64
auto = tf.data.AUTOTUNE
resize_bigger = 280
num_classes = 5def preprocess_dataset(is_training=True):def _pp(image, label):if is_training:# Resize to a bigger spatial resolution and take the random# crops.image = tf.image.resize(image, (resize_bigger, resize_bigger))image = tf.image.random_crop(image, (image_size, image_size, 3))image = tf.image.random_flip_left_right(image)else:image = tf.image.resize(image, (image_size, image_size))label = tf.one_hot(label, depth=num_classes)return image, labelreturn _ppdef prepare_dataset(dataset, is_training=True):if is_training:dataset = dataset.shuffle(batch_size * 10)dataset = dataset.map(preprocess_dataset(is_training), num_parallel_calls=auto)return dataset.batch(batch_size).prefetch(auto)

咱们使用多尺度数据采样器来帮助模型学习不同尺度的表征。

train_dataset, val_dataset = tfds.load("tf_flowers", split=["train[:90%]", "train[90%:]"], as_supervised=True
)num_train = train_dataset.cardinality()
num_val = val_dataset.cardinality()
print(f"Number of training examples: {num_train}")
print(f"Number of validation examples: {num_val}")train_dataset = prepare_dataset(train_dataset, is_training=True)
val_dataset = prepare_dataset(val_dataset, is_training=False)

演绎如下:
 

Number of training examples: 3303
Number of validation examples: 367

--- ## Train a MobileViT (XXS) model

learning_rate = 0.002
label_smoothing_factor = 0.1
epochs = 30optimizer = keras.optimizers.Adam(learning_rate=learning_rate)
loss_fn = keras.losses.CategoricalCrossentropy(label_smoothing=label_smoothing_factor)def run_experiment(epochs=epochs):mobilevit_xxs = create_mobilevit(num_classes=num_classes)mobilevit_xxs.compile(optimizer=optimizer, loss=loss_fn, metrics=["accuracy"])# When using `save_weights_only=True` in `ModelCheckpoint`, the filepath provided must end in `.weights.h5`checkpoint_filepath = "/tmp/checkpoint.weights.h5"checkpoint_callback = keras.callbacks.ModelCheckpoint(checkpoint_filepath,monitor="val_accuracy",save_best_only=True,save_weights_only=True,)mobilevit_xxs.fit(train_dataset,validation_data=val_dataset,epochs=epochs,callbacks=[checkpoint_callback],)mobilevit_xxs.load_weights(checkpoint_filepath)_, accuracy = mobilevit_xxs.evaluate(val_dataset)print(f"Validation accuracy: {round(accuracy * 100, 2)}%")return mobilevit_xxsmobilevit_xxs = run_experiment()

演绎:

Epoch 1/30
52/52 [==============================] - 47s 459ms/step - loss: 1.3397 - accuracy: 0.4832 - val_loss: 1.7250 - val_accuracy: 0.1662
Epoch 2/30
52/52 [==============================] - 21s 404ms/step - loss: 1.1167 - accuracy: 0.6210 - val_loss: 1.9844 - val_accuracy: 0.1907
Epoch 3/30
52/52 [==============================] - 21s 403ms/step - loss: 1.0217 - accuracy: 0.6709 - val_loss: 1.8187 - val_accuracy: 0.1907
Epoch 4/30
52/52 [==============================] - 21s 409ms/step - loss: 0.9682 - accuracy: 0.7048 - val_loss: 2.0329 - val_accuracy: 0.1907
Epoch 5/30
52/52 [==============================] - 21s 408ms/step - loss: 0.9552 - accuracy: 0.7196 - val_loss: 2.1150 - val_accuracy: 0.1907
Epoch 6/30
52/52 [==============================] - 21s 407ms/step - loss: 0.9186 - accuracy: 0.7318 - val_loss: 2.9713 - val_accuracy: 0.1907
Epoch 7/30
52/52 [==============================] - 21s 407ms/step - loss: 0.8986 - accuracy: 0.7457 - val_loss: 3.2062 - val_accuracy: 0.1907
Epoch 8/30
52/52 [==============================] - 21s 408ms/step - loss: 0.8831 - accuracy: 0.7542 - val_loss: 3.8631 - val_accuracy: 0.1907
Epoch 9/30
52/52 [==============================] - 21s 408ms/step - loss: 0.8433 - accuracy: 0.7714 - val_loss: 1.8029 - val_accuracy: 0.3542
Epoch 10/30
52/52 [==============================] - 21s 408ms/step - loss: 0.8489 - accuracy: 0.7763 - val_loss: 1.7920 - val_accuracy: 0.4796
Epoch 11/30
52/52 [==============================] - 21s 409ms/step - loss: 0.8256 - accuracy: 0.7884 - val_loss: 1.4992 - val_accuracy: 0.5477
Epoch 12/30
52/52 [==============================] - 21s 407ms/step - loss: 0.7859 - accuracy: 0.8123 - val_loss: 0.9236 - val_accuracy: 0.7330
Epoch 13/30
52/52 [==============================] - 21s 409ms/step - loss: 0.7702 - accuracy: 0.8159 - val_loss: 0.8059 - val_accuracy: 0.8011
Epoch 14/30
52/52 [==============================] - 21s 403ms/step - loss: 0.7670 - accuracy: 0.8153 - val_loss: 1.1535 - val_accuracy: 0.7084
Epoch 15/30
52/52 [==============================] - 21s 408ms/step - loss: 0.7332 - accuracy: 0.8344 - val_loss: 0.7746 - val_accuracy: 0.8147
Epoch 16/30
52/52 [==============================] - 21s 404ms/step - loss: 0.7284 - accuracy: 0.8335 - val_loss: 1.0342 - val_accuracy: 0.7330
Epoch 17/30
52/52 [==============================] - 21s 409ms/step - loss: 0.7484 - accuracy: 0.8262 - val_loss: 1.0523 - val_accuracy: 0.7112
Epoch 18/30
52/52 [==============================] - 21s 408ms/step - loss: 0.7209 - accuracy: 0.8450 - val_loss: 0.8146 - val_accuracy: 0.8174
Epoch 19/30
52/52 [==============================] - 21s 409ms/step - loss: 0.7141 - accuracy: 0.8435 - val_loss: 0.8016 - val_accuracy: 0.7875
Epoch 20/30
52/52 [==============================] - 21s 410ms/step - loss: 0.7075 - accuracy: 0.8435 - val_loss: 0.9352 - val_accuracy: 0.7439
Epoch 21/30
52/52 [==============================] - 21s 406ms/step - loss: 0.7066 - accuracy: 0.8504 - val_loss: 1.0171 - val_accuracy: 0.7139
Epoch 22/30
52/52 [==============================] - 21s 405ms/step - loss: 0.6913 - accuracy: 0.8532 - val_loss: 0.7059 - val_accuracy: 0.8610
Epoch 23/30
52/52 [==============================] - 21s 408ms/step - loss: 0.6681 - accuracy: 0.8671 - val_loss: 0.8007 - val_accuracy: 0.8147
Epoch 24/30
52/52 [==============================] - 21s 409ms/step - loss: 0.6636 - accuracy: 0.8747 - val_loss: 0.9490 - val_accuracy: 0.7302
Epoch 25/30
52/52 [==============================] - 21s 408ms/step - loss: 0.6637 - accuracy: 0.8722 - val_loss: 0.6913 - val_accuracy: 0.8556
Epoch 26/30
52/52 [==============================] - 21s 406ms/step - loss: 0.6443 - accuracy: 0.8837 - val_loss: 1.0483 - val_accuracy: 0.7139
Epoch 27/30
52/52 [==============================] - 21s 407ms/step - loss: 0.6555 - accuracy: 0.8695 - val_loss: 0.9448 - val_accuracy: 0.7602
Epoch 28/30
52/52 [==============================] - 21s 409ms/step - loss: 0.6409 - accuracy: 0.8807 - val_loss: 0.9337 - val_accuracy: 0.7302
Epoch 29/30
52/52 [==============================] - 21s 408ms/step - loss: 0.6300 - accuracy: 0.8910 - val_loss: 0.7461 - val_accuracy: 0.8256
Epoch 30/30
52/52 [==============================] - 21s 408ms/step - loss: 0.6093 - accuracy: 0.8968 - val_loss: 0.8651 - val_accuracy: 0.7766
6/6 [==============================] - 0s 65ms/step - loss: 0.7059 - accuracy: 0.8610
Validation accuracy: 86.1%

--- ## 结果和 TFLite 转换 大约有一百万个参数,在 256x256 分辨率下达到 ~85% top-1 的准确率是一个很好的结果。这款 MobileViT 移动设备与 TensorFlow Lite (TFLite) 完全兼容,可以用以下代码进行转换:

# Serialize the model as a SavedModel.
tf.saved_model.save(mobilevit_xxs, "mobilevit_xxs")# Convert to TFLite. This form of quantization is called
# post-training dynamic-range quantization in TFLite.
converter = tf.lite.TFLiteConverter.from_saved_model("mobilevit_xxs")
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS,  # Enable TensorFlow Lite ops.tf.lite.OpsSet.SELECT_TF_OPS,  # Enable TensorFlow ops.
]
tflite_model = converter.convert()
open("mobilevit_xxs.tflite", "wb").write(tflite_model)

要了解有关 TFLite 中可用的不同量化配方以及使用 TFLite 模型运行推理的更多信息,请查阅 [本官方资源](https://www.tensorflow.org/lite/performance/post_training_quantization)。

您可以使用[Hugging Face Hub](https://huggingface.co/keras-io/mobile-vit-xxs)上托管的训练有素的模型,并尝试[Hugging Face Spaces](https://huggingface.co/spaces/keras-io/Flowers-Classification-MobileViT)上的演示。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/301883.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

STC89C52学习笔记(六)

STC89C52学习笔记(六) 综述:本文讲述了51单片机的定时器和中断,还讲述了如何初始化定时器、编写中断服务函数和完成定时器控制LED闪烁。 一、定时器 1. 作用 ①用于计时 ②替代长时间的Delay。因为在Delay下,单片…

php站长在线工具箱源码优化版

环境要求 PHP > 7.4MySQL > 5.6fileinfo扩展使用Redis缓存需安装Redis扩展 源码下载地址:php站长在线工具箱源码优化版.zip

stm32GPO的相关操作

GPIO的使用 1.GPIO八种工作模式1.1 上拉输入1.2 下拉输入1.3 浮空输入1.4 模拟输入1.5 推挽输出1.6 开漏输出1.7 复用推挽输出1.8 复用开漏输出 2.相关寄存器2.1 寄存器配置IO 3.相关库函数 1.GPIO八种工作模式 保护二极管的作用:用来保护IO,一般情况IO的…

【React】Ant Design社区扩展库之分割面板:react-resizable-panels

主角:react-resizable-panels 简介:来之Ant Design官方文档社区精选组件 1、效果 2、环境 react-resizable-panels: ^2.0.16next: 14.1.3react: ^18 3、安装 # npm npm install react-resizable-panels# yarn yarn add react-resizable-panels# pnpm …

AI编程005/ 逆向生成mysql的建表语句

1/ 通过insert into 语句生成建表语句 有些时候我们能获取到表的insert语句,但是没有表结构。我们可以借助AI工具,让其逆向生成mysql的建表语句。 提示词如下: 根据下面的SQL语句,逆向生存mysql的建表语句,每个字段…

文心一言上线声音定制功能;通义千问开源模型;openAI又侵权?

文心一言上线定制专属声音功能 百度旗下 AI 聊天机器人文心一言上线新功能,用户录音一句话,即可定制声音。 使用这项功能需要使用文心一言 App。在创建智能体中,点击创建自己的声音,朗读系统提示的一句话,等候几秒钟时…

【大数据】大数据概论与Hadoop

目录 1.大数据概述 1.1.大数据的概念 1.2.大数据的应用场景 1.3.大数据的关键技术 1.4.大数据的计算模式 1.5.大数据和云计算的关系 1.6.物联网 2.Hadoop 2.1.核心架构 2.2.版本演进 2.3.生态圈的全量结构 1.大数据概述 1.1.大数据的概念 大数据即字面意思&#x…

网络工程师笔记18(关于网络的一些基本知识)

网络的分类 介绍计算机网络的基本概念,这一章最主要的内容是计算机网络的体系结构-ISO 开放系统互连参考模型,其中的基本概念,例如协议实体、协议数据单元,服务数据单元、面向连接的服务和无连接的服务、服务原语、服务访问点、相…

Vscode 中调试Django程序

调试介绍: ​​​​​​​Explore the debugger Debug/调试 可以让我们在特定的代码行上暂停程序的运行。当程序暂停时,我们可以查看变量的数值,在“Debug控制台”中运行代码,或利用“Debug”工具提供的其他功能。启动Debugger/调试器会自动…

迭代器模式

前言 迭代器模式就是分离了集合对象的遍历行为,抽象出一个迭代器类来负责,这样既可以做到不暴露集合的内部结构,又可让外部代码透明地访问集合内部的数据。 迭代器模式在访问数组、集合、列表等数据时,尤其是数据库数据操作时&am…

PSO-SVM,基于PSO粒子群算法优化SVM支持向量机回归预测(多输入单输出)-附代码

PSO-SVM是一种结合了粒子群优化(Particle Swarm Optimization, PSO)算法和支持向量机(Support Vector Machine, SVM)的方法,用于回归预测问题。下面我将解释PSO-SVM的原理: 1、支持向量机(SVM&a…

系统架构评估_3.ATAM方法

架构权衡分析方法(Architecture Tradeoff Analysis Method,ATAM)是在SAAM的基础发展起来的,主要针对性能、实用性、安全性和可修改性,在系统开发之前,对这些质量属性进行评价和折中。 (1&#x…

10倍提效!用ChatGPT编写系统功能文档。。。

系统功能文档是一种描述软件系统功能和操作方式的文档。它让开发团队、测试人员、项目管理者、客户和最终用户对系统行为有清晰、全面的了解。 通过ChatGPT,我们能让编写系统功能文档的效率提升10倍以上。 ​《Leetcode算法刷题宝典》一位阿里P8大佬总结的刷题笔记…

计算机网络-TCP连接建立阶段错误应对机制

错误现象 丢包 网络问题:网络不稳定可能导致丢包,例如信号弱或干扰强。带宽限制可能导致路由器或交换机丢弃包,尤其是在高流量时段。网络拥塞时,多个数据流竞争有限的资源,也可能导致丢包。缓冲区溢出:TC…

Astra深度相机在Ubuntu18.04系统下实现相机标定

问题: 当使用Astra相机的启动的指令启动相机后,使用rviz查看相机所发布的rgb数据时,在终端会出现如下的提示信息: Camera calibration file /home/car/.ros/camera_info/rgb_Astra_Orbbec.yaml not found. Camera calibration fil…

(学习日记)2024.04.11:UCOSIII第三十九节:软件定时器

写在前面: 由于时间的不足与学习的碎片化,写博客变得有些奢侈。 但是对于记录学习(忘了以后能快速复习)的渴望一天天变得强烈。 既然如此 不如以天为单位,以时间为顺序,仅仅将博客当做一个知识学习的目录&a…

nacos分布式程序开发实例

1.通过windows docker desktop 完成 nacos 的安装/启动/配置 (1)先安装docker desktop docker-toolbox-windows-docker-for-windows-stable安装包下载_开源镜像站-阿里云 (2)配置docker 国内镜像源 Docker 镜像加速 | 菜鸟教程…

携程旅行 abtest

声明: 本文章中所有内容仅供学习交流使用,不用于其他任何目的,抓包内容、敏感网址、数据接口等均已做脱敏处理,严禁用于商业用途和非法用途,否则由此产生的一切后果均与作者无关!wx a15018601872 本文章…

Linux|从 STDIN 读取 Awk 输入

简介 在之前关于 Awk 工具的系列文章中,主要探讨了如何从文件中读取数据。但如果你希望从标准输入(STDIN)中读取数据,又该如何操作呢? 在本文中,将介绍几个示例,展示如何使用 Awk 来过滤其他命令…

WPF使用MVVM,将Image中的图片绑定到OpenCVSharp中的Mat类型

看了很多帖子,代码复制过去都是报错的,查看了OpenCVSharp.Extensions的底层,发现用法在WPF中已经进行了更改,原本需要从Mat->Bitmap->BitmapImage,简化成了Mat->BitmapSource这一个过程,所以这也是…