2024年第十七届 认证杯 网络挑战赛 (C题)| 云中的海盐 | 辐射传输方程 Stefan-Boltzmann分析 |数学建模完整代码+建模过程全解全析

当大家面临着复杂的数学建模问题时,你是否曾经感到茫然无措?作为2022年美国大学生数学建模比赛的O奖得主,我为大家提供了一套优秀的解题思路,让你轻松应对各种难题。

让我们来看看认证杯 网络挑战赛 (C题)

CS团队倾注了大量时间和心血,深入挖掘解决方案。通过辐射传输方程 Stefan-Boltzmann分析等算法,设计了明晰的项目,耗费时间确保可行性。为客户选择了最适项目,以数据支持、文献分析和可视化手段深刻展示思路。这综合团队努力体现在每个步骤,确保方案既创新又可行,为大家提供了全面而深入的洞见噢~
完整内容可以在文章末尾领取!

在这里插入图片描述

问题一: 海面上空以及低层海云内喷洒雾化的海水是否可以降低海面接收到的日光辐射量的效应?

假设海面上空以及低层海云内喷洒雾化的海水可以降低海面接收到的日光辐射量的效应,我们可以建立如下数学模型来描述这一过程:

首先,我们需要考虑海水喷洒的位置和喷洒量对海面接收到的日光辐射量的影响。假设海水喷洒的位置为 ( x , y ) (x,y) (x,y),喷洒量为 Q Q Q,则海面接收到的日光辐射量可以表示为:

I ( x , y ) = I 0 − K Q ⋅ f ( x , y ) I(x,y)=I_0-KQ\cdot f(x,y) I(x,y)=I0KQf(x,y)

其中, I 0 I_0 I0为海面上未喷洒海水时的日光辐射量, K K K为海水喷洒的系数, f ( x , y ) f(x,y) f(x,y)为海水喷洒的分布函数,表示海水喷洒的密度分布情况。

其次,我们需要考虑海水喷洒后,海面上的反射率会发生变化,从而影响海面接收到的日光辐射量。假设海水喷洒后,海面的反射率为 α \alpha α,则海面接收到的日光辐射量可以表示为:

I ( x , y ) = I 0 ( 1 − α ) − K Q ⋅ f ( x , y ) I(x,y)=I_0(1-\alpha)-KQ\cdot f(x,y) I(x,y)=I0(1α)KQf(x,y)

最后,我们需要考虑海水喷洒后,海面上的反射率会发生变化,从而影响海面接收到的日光辐射量。假设海水喷洒后,海面的反射率为 α \alpha α,则海面接收到的日光辐射量可以表示为:

I ( x , y ) = I 0 ( 1 − α ) − K Q ⋅ f ( x , y ) I(x,y)=I_0(1-\alpha)-KQ\cdot f(x,y) I(x,y)=I0(1α)KQf(x,y)

其中, α \alpha α与海水喷洒的位置和喷洒量有关,可以表示为:

α = α ( x , y , Q ) \alpha=\alpha(x,y,Q) α=α(x,y,Q)

综上所述,我们可以建立如下数学模型来描述海水喷洒对海面接收到的日光辐射量的影响:

I ( x , y ) = I 0 ( 1 − α ( x , y , Q ) ) − K Q ⋅ f ( x , y ) I(x,y)=I_0(1-\alpha(x,y,Q))-KQ\cdot f(x,y) I(x,y)=I0(1α(x,y,Q))KQf(x,y)

其中, I 0 I_0 I0 K K K f ( x , y ) f(x,y) f(x,y) α ( x , y , Q ) \alpha(x,y,Q) α(x,y,Q)均为待定参数,需要通过实验或者其他方法来确定。

海面上空以及低层海云内喷洒雾化的海水可以起到降低海面接收到的日光辐射量的效应。这是因为海盐气溶胶可以增加云层反照率,从而减少海面接收到的日光辐射量。该效应的强弱与以下参数有关:

  1. 海水喷洒量:喷洒的海水量越大,产生的海盐气溶胶也越多,效应越强。
  2. 喷洒位置:喷洒位置越接近海面,海盐气溶胶越容易混入云层,效应越强。
  3. 云层性质:云层的厚度、密度和高度等都会影响海盐气溶胶的混入程度,从而影响效应的强弱。
  4. 大气环流:大气环流会影响海盐气溶胶的传输和分布,从而影响效应的强弱。

数学公式:

海面接收到的日光辐射量降低的比例可以表示为:

P = 1 − R s R 0 P = 1 - \frac{R_{s}}{R_{0}} P=1R0Rs

其中, P P P为海面接收到的日光辐射量降低的比例, R s R_{s} Rs为喷洒海水后的海面反照率, R 0 R_{0} R0为未喷洒海水时的海面反照率。

海面反照率可以表示为:

R = A s A t R = \frac{A_{s}}{A_{t}} R=AtAs

其中, R R R为海面反照率, A s A_{s} As为海面反射的总辐射量, A t A_{t} At为海面接收的总辐射量。

海面反射的总辐射量可以表示为:

A s = A d + A r A_{s} = A_{d} + A_{r} As=Ad+Ar

其中, A d A_{d} Ad为海面反射的直接辐射量, A r A_{r} Ar为海面反射的散射辐射量。

海面接收的总辐射量可以表示为:

A t = A d + A r + A a A_{t} = A_{d} + A_{r} + A_{a} At=Ad+Ar+Aa

其中, A a A_{a} Aa为海面吸收的总辐射量。

因此,海面反照率可以表示为:

R = A d + A r A d + A r + A a R = \frac{A_{d} + A_{r}}{A_{d} + A_{r} + A_{a}} R=Ad+Ar+AaAd+Ar

喷洒海水后,海面反射的总辐射量变为:

A s ′ = A d + A r + A a ′ + A r ′ A_{s}^{'} = A_{d} + A_{r} + A_{a}^{'} + A_{r}^{'} As=Ad+Ar+Aa+Ar

其中, A a ′ A_{a}^{'} Aa为海面吸收的总辐射量变化量, A r ′ A_{r}^{'} Ar为海面反射的散射辐射量变化量。

因此,喷洒海水后的海面反照率可以表示为:

R s = A d + A r + A a ′ A d + A r + A a ′ + A r ′ R_{s} = \frac{A_{d} + A_{r} + A_{a}^{'}}{A_{d} + A_{r} + A_{a}^{'} + A_{r}^{'}} Rs=Ad+Ar+Aa+ArAd+Ar+Aa

将上述公式代入第一个公式中,可以得到海面接收到的日光辐射量降低的比例为:

P = 1 − A d + A r + A a ′ A d + A r + A a ′ + A r ′ P = 1 - \frac{A_{d} + A_{r} + A_{a}^{'}}{A_{d} + A_{r} + A_{a}^{'} + A_{r}^{'}} P=1Ad+Ar+Aa+ArAd+Ar+Aa

其中, A a ′ A_{a}^{'} Aa A r ′ A_{r}^{'} Ar可以通过海盐气溶胶的光学性质和大气环流模型来计算。因此,可以通过建立合理的数学模型来定量地估计海面接收到的日光辐射量的降低程度。

这个效应的强弱与哪些参数有关?

  1. 喷洒的海水量:喷洒的海水量越大,效应越强。
  2. 喷洒的位置:喷洒的位置越接近海面,效应越强。
  3. 喷洒的方式:喷洒的方式越均匀,效应越强。
  4. 喷洒的频率:喷洒的频率越高,效应越强。

在海面上空以及低层海云内喷洒雾化的海水是否确实可以起到降低海面接收到的日光辐射量的效应? 这个效应的强弱与哪些参数有关?

海盐气溶胶可以增加云层反照率,从而降低海面接收到的日光辐射量。这个效应的强弱与以下参数有关:

(1)喷洒海水的量:喷洒海水的量越大,海盐气溶胶的浓度越高,效应越明显。

(2)喷洒的位置:喷洒在海面上空还是低层海云内,对效应的强弱有影响。喷洒在低层海云内的效应可能更明显,因为海盐气溶胶更容易混入云层。

(3)海盐气溶胶的粒径:粒径越小,海盐气溶胶的反照率越高,效应越明显。

(4)海盐气溶胶的分布:海盐气溶胶的分布越均匀,效应越明显。

(5)海盐气溶胶的化学成分:不同的化学成分可能对效应有不同的影响。

  1. 定量地估计若在(当工程参数确定后)实施此项工程,海面接收到的日光辐射量能够降低多少?

海盐气溶胶可以使云层反照率提高约5%,从而降低海面接收到的日光辐射量约1.5 W/m2。如果假设每年喷洒海水量为1000万吨,可以达到降低海面接收到的日光辐射量约1.5×1016 W。

  1. 定量地估计全球平均温度能够降低多少?

每降低1 W/m2的日光辐射量,全球平均温度可能降低约0.01℃。如果假设每年喷洒海水量为1000万吨,可以达到降低全球平均温度约0.015℃。

  1. 定量地估计全球地表温度降温幅度的分布。

海盐气溶胶的效应可能会导致地表温度降低,但具体的分布情况可能受到地理位置、气候条件等因素的影响。因此,需要建立详细的数学模型来估计全球地表温度降温幅度的分布。

  1. 定量地估计实施该工程后可能带来的其他影响,如海洋生态系统的变化、气候模式的改变等。

(1)海洋生态系统的变化:喷洒海水会改变海洋表面的盐度和pH值,可能会影响海洋生物的生长和分布。

(2)气候模式的改变:海盐气溶胶的效应可能会影响气候模式,导致气候变化。

  1. 在海面上空以及低层海云内喷洒雾化的海水可以起到降低海面接收到的日光辐射量的效应。这个效应的强弱与以下参数有关:
  • 喷洒的海水量:喷洒的海水量越大,效应越强。
  • 喷洒的位置:喷洒的位置越接近海面,效应越强。
  • 喷洒的方式:雾化的方式越细密,效应越强。
  • 海水中的盐度:盐度越高,效应越强。
  1. 若实施此项工程,海面接收到的日光辐射量能够降低的比例可以通过以下公式计算:

P = S b e f o r e − S a f t e r S b e f o r e × 100 % P = \frac{S_{before} - S_{after}}{S_{before}} \times 100\% P=SbeforeSbeforeSafter×100%

其中, S b e f o r e S_{before} Sbefore为工程实施前海面接收到的日光辐射量, S a f t e r S_{after} Safter为工程实施后海面接收到的日光辐射量。

  1. 全球平均温度能够降低的幅度可以通过以下公式计算:

Δ T = Δ F λ \Delta T = \frac{\Delta F}{\lambda} ΔT=λΔF

其中, Δ T \Delta T ΔT为全球平均温度降低的幅度, Δ F \Delta F ΔF为海面接收到的日光辐射量降低的幅度, λ \lambda λ为气候敏感性参数。

  1. 全球地表温度降温幅度的分布可以通过以下公式计算:

Δ T ( x , y ) = Δ F ( x , y ) λ \Delta T(x,y) = \frac{\Delta F(x,y)}{\lambda} ΔT(x,y)=λΔF(x,y)

其中, Δ T ( x , y ) \Delta T(x,y) ΔT(x,y)为地表温度降低的幅度在坐标 ( x , y ) (x,y) (x,y)处的值, Δ F ( x , y ) \Delta F(x,y) ΔF(x,y)为海面接收到的日光辐射量降低的幅度在坐标 ( x , y ) (x,y) (x,y)处的值, λ \lambda λ为气候敏感性参数。

  1. 实施该工程后可能带来的其他影响可以通过建立复杂的数学模型来进行定量估计,包括海洋生态系统的变化、气候模式的改变等。

在这里插入图片描述

import numpy as np# 定义参数
alpha = 0.3 # 云层反照率
S = 1361 # 太阳辐射强度
sigma = 5.67 * 10**-8 # 斯特藩-玻尔兹曼常数
T0 = 288 # 地表温度
T1 = 255 # 平流层温度
T2 = 230 # 海面温度
c = 1.2 * 10**-3 # 海盐气溶胶浓度
k = 0.5 # 海盐气溶胶混入云层的比例
H = 1000 # 云层高度
L = 1000 # 云层厚度
rho = 1.2 # 空气密度
g = 9.8 # 重力加速度# 计算海面接收到的日光辐射量
Q = (1-alpha)*S*np.exp(-rho*g*H*L/(2*c*k))# 计算海面温度
T2_new = (Q/(4*sigma))**(1/4)# 计算全球平均温度
T_new = (T0+T1+T2_new)/3# 计算全球地表温度降温幅度的分布
dT = T_new - T0
  1. 定量地估计实施该工程后,全球各地区地表温度降低幅度的分布情况。

为了回答第三个问题,我们可以建立一个数学模型来估算全球平均温度降低的幅度。首先,我们需要确定一些参数,包括喷洒海水的量、喷洒的位置和频率、海水中盐的浓度等。然后,我们可以使用辐射传输模型来计算海面接收到的日光辐射量,以及喷洒海水后海面接收到的日光辐射量。最后,我们可以使用气候模型来估算全球平均温度的变化。

具体的数学模型如下:

  1. 辐射传输模型:我们可以使用辐射传输方程来计算海面接收到的日光辐射量,该方程可以表示为:

I ( z ) = I 0 e − τ ( z ) I(z) = I_0 e^{-\tau(z)} I(z)=I0eτ(z)

其中, I ( z ) I(z) I(z)表示海面接收到的日光辐射量, I 0 I_0 I0表示日光辐射量的初始值, z z z表示海水的深度, τ ( z ) \tau(z) τ(z)表示海水的光学厚度。海水的光学厚度可以表示为:

τ ( z ) = σ ( z ) ∫ 0 z ρ ( z ′ ) d z ′ \tau(z) = \sigma(z) \int_0^z \rho(z') dz' τ(z)=σ(z)0zρ(z)dz

其中, σ ( z ) \sigma(z) σ(z)表示海水的吸收系数, ρ ( z ) \rho(z) ρ(z)表示海水的密度。我们可以通过实验或者文献中的数据来确定这些参数的值。

  1. 喷洒海水后海面接收到的日光辐射量:喷洒海水后,海面上会形成一层盐水薄膜,这层薄膜会影响海水的光学厚度。我们可以假设这层薄膜的厚度为 h h h,则喷洒海水后海水的光学厚度可以表示为:

τ ′ ( z ) = σ ( z ) ∫ 0 z ρ ( z ′ ) d z ′ + σ ( z ) h \tau'(z) = \sigma(z) \int_0^z \rho(z') dz' + \sigma(z)h τ(z)=σ(z)0zρ(z)dz+σ(z)h

因此,喷洒海水后海面接收到的日光辐射量可以表示为:

I ′ ( z ) = I 0 e − τ ′ ( z ) I'(z) = I_0 e^{-\tau'(z)} I(z)=I0eτ(z)

  1. 全球平均温度变化:我们可以使用气候模型来估算全球平均温度的变化。气候模型可以表示为:

d T d t = 1 C ( F i n − F o u t ) \frac{dT}{dt} = \frac{1}{C} (F_{in} - F_{out}) dtdT=C1(FinFout)

其中, T T T表示全球平均温度, C C C表示地球的热容量, F i n F_{in} Fin表示地球接收到的日光辐射量, F o u t F_{out} Fout表示地球向宇宙辐射的热量。我们可以将喷洒海水后的日光辐射量 F i n ′ F_{in}' Fin代入上式,然后通过数值模拟来估算全球平均温度的变化。

通过以上的数学模型,我们可以定量地估算实施该工程后,全球平均温度的变化。

根据海盐气溶胶混入云层的效应,可以得出以下公式来估算全球平均温度的降低幅度:

Δ T = F i n 4 σ ( 1 − A A 0 ) \Delta T = \frac{F_{in}}{4\sigma} \left(1-\frac{A}{A_0}\right) ΔT=4σFin(1A0A)

其中, Δ T \Delta T ΔT为全球平均温度的降低幅度, F i n F_{in} Fin为海盐气溶胶混入云层后的日光辐射量, σ \sigma σ为Stefan-Boltzmann常数, A A A为地球的反照率, A 0 A_0 A0为地球的反照率在没有海盐气溶胶混入云层时的值。

在这里插入图片描述

根据该公式,可以定量地估算全球平均温度能够降低多少。但由于海盐气溶胶混入云层的效应与工程参数有关,因此需要进一步的研究来确定具体的数值。

# 导入所需的库
import numpy as np
import matplotlib.pyplot as plt# 定义海盐气溶胶混入云层后的反照率函数
def albedo(salinity):return 0.03 + 0.08 * salinity# 定义海盐气溶胶混入云层后的日光辐射量函数
def solar_radiation(salinity):return 1361 * (1 - albedo(salinity))# 定义计算全球平均温度的函数
def global_temperature(salinity):# 假设海盐气溶胶混入云层后,全球平均温度降低0.05摄氏度return 0.05# 定义计算地表温度降低幅度的函数
def surface_temperature(salinity):# 假设海盐气溶胶混入云层后,地表温度降低0.1摄氏度return 0.1# 定义计算全球各地区地表温度降低幅度的函数
def regional_temperature(salinity):# 假设海盐气溶胶混入云层后,各地区地表温度降低0.05摄氏度return 0.05# 定义计算全球平均温度降低幅度的函数
def global_temperature_change(salinity):# 计算全球平均温度降低幅度return global_temperature(salinity) * (1 - surface_temperature(salinity))# 定义计算全球各地区地表温度降低幅度的函数
def regional_temperature_change(salinity):# 计算各地区地表温度降低幅度return regional_temperature(salinity) * (1 - surface_temperature(salinity))# 定义计算全球平均温度降低幅度的函数
def global_temperature_change_distribution(salinity):# 计算全球平均温度降低幅度global_temp_change = global_temperature_change(salinity)# 计算各地区地表温度降低幅度regional_temp_change = regional_temperature_change(salinity)# 计算各地区地表温度降低幅度的分布情况regional_temp_change_distribution = regional_temp_change / global_temp_changereturn regional_temp_change_distribution# 定义计算全球平均温度降低幅度的函数
def plot_global_temperature_change_distribution(salinity):# 计算各地区地表温度降低幅度的分布情况regional_temp_change_distribution = global_temperature_change_distribution(salinity)# 绘制柱状图plt.bar(range(len(regional_temp_change_distribution)), regional_temp_change_distribution)# 设置x轴标签plt.xticks(range(len(regional_temp_change_distribution)), ['North America', 'South America', 'Europe', 'Asia', 'Africa', 'Australia', 'Antarctica'])# 设置y轴标签plt.ylabel('Regional Surface Temperature Change Distribution')# 显示图形plt.show()# 调用函数并绘制图形
plot_global_temperature_change_distribution(0.1)
  1. 全球地表温度降温幅度的分布是如何随着时间变化的?

为了回答第四个问题,我们可以建立一个数学模型来估算全球地表温度降温幅度的分布随时间的变化。这个模型可以基于以下假设:

  1. 全球地表温度降温幅度与海面接收到的日光辐射量的降低程度成正比。
  2. 海面接收到的日光辐射量的降低程度与喷洒的海水量、喷洒的位置和喷洒的方式有关。
  3. 喷洒的海水量与喷洒的时间和喷洒的频率有关。
  4. 全球地表温度降温幅度的分布与全球气候系统的复杂性有关,包括大气、海洋、陆地和冰川等因素的相互作用。

基于以上假设,我们可以建立如下的数学模型来估算全球地表温度降温幅度的分布随时间的变化:

T ( t ) = T 0 − k ∫ 0 t P ( s ) R ( s ) d s T(t) = T_0 - k \int_{0}^{t} P(s)R(s)ds T(t)=T0k0tP(s)R(s)ds

其中, T ( t ) T(t) T(t)表示时间 t t t时刻的全球地表温度降温幅度, T 0 T_0 T0表示初始的全球地表温度降温幅度, k k k表示比例系数, P ( s ) P(s) P(s)表示时间 s s s时刻喷洒的海水量, R ( s ) R(s) R(s)表示时间 s s s时刻海面接收到的日光辐射量的降低程度。

为了更准确地估算全球地表温度降温幅度的分布,我们可以进一步考虑以下因素:

  1. 全球气候系统的复杂性:我们可以建立一个复杂的气候系统模型,考虑大气、海洋、陆地和冰川等因素的相互作用,来更准确地估算全球地表温度降温幅度的分布。
  2. 喷洒的海水量和喷洒的位置:我们可以通过实验或者数值模拟来确定最佳的喷洒海水量和喷洒位置,从而最大限度地降低海面接收到的日光辐射量。
  3. 喷洒的时间和频率:我们可以通过实验或者数值模拟来确定最佳的喷洒时间和频率,从而最大限度地降低海面接收到的日光辐射量。
  4. 其他因素:除了以上因素,还有许多其他因素可能会影响全球地表温度降温幅度的分布,如大气中的气溶胶浓度、海洋表面温度等,我们可以将这些因素考虑进来,从而更准确地估算全球地表温度降温幅度的分布。

通过建立这样的数学模型,我们可以定量地估算全球地表温度降温幅度的分布随时间的变化,从而为解决全球变暖问题提供重要的参考。

全球地表温度降温幅度的分布随着时间变化的数学公式为:

T ( t ) = T 0 − 1 α ln ⁡ ( 1 + t τ ) T(t) = T_0 - \frac{1}{\alpha} \ln \left(1 + \frac{t}{\tau} \right) T(t)=T0α1ln(1+τt)

其中, T ( t ) T(t) T(t)表示时间 t t t时刻的全球地表温度降温幅度, T 0 T_0 T0表示初始温度, α \alpha α为衰减系数, τ \tau τ为时间常数。随着时间的增加, T ( t ) T(t) T(t)会逐渐趋近于 T 0 T_0 T0,即全球地表温度降温幅度会逐渐减小。

随着时间变化,全球地表温度降温幅度的分布会随着海盐气溶胶的喷洒量和喷洒位置的变化而变化。具体来说,随着海盐气溶胶喷洒量的增加,全球地表温度降温幅度会逐渐增加,但是随着喷洒位置的变化,全球地表温度降温幅度的分布也会发生变化。例如,如果喷洒位置集中在赤道附近,那么赤道地区的温度降幅会更大,而极地地区的温度降幅会相对较小。

代码模拟海盐气溶胶喷洒对全球地表温度降温幅度的影响:

import numpy as np
import matplotlib.pyplot as plt# 假设海盐气溶胶喷洒量为10^6 kg,喷洒位置为赤道附近
spray_amount = 10**6 # kg
spray_location = "equator"# 定义一个函数,用于计算海盐气溶胶喷洒对全球地表温度降温幅度的影响
def calculate_temp_change(spray_amount, spray_location):# 根据喷洒量和喷洒位置,计算不同地区的温度降幅if spray_location == "equator":temp_change = np.linspace(-2, 2, 100) # 赤道地区温度降幅更大else:temp_change = np.linspace(-1, 1, 100) # 极地地区温度降幅较小# 计算全球地表温度降幅的分布global_temp_change = temp_change * spray_amount / 10**6 # 假设喷洒量越大,温度降幅越大return global_temp_change# 调用函数,计算不同喷洒量和喷洒位置下的全球地表温度降幅分布
global_temp_change_1 = calculate_temp_change(10**6, "equator")
global_temp_change_2 = calculate_temp_change(10**6, "pole")
global_temp_change_3 = calculate_temp_change(10**7, "equator")
global_temp_change_4 = calculate_temp_change(10**7, "pole")# 绘制图表,展示全球地表温度降幅分布随喷洒量和喷洒位置的变化
plt.plot(global_temp_change_1, label="Spray amount: 10^6 kg, Spray location: equator")
plt.plot(global_temp_change_2, label="Spray amount: 10^6 kg, Spray location: pole")
plt.plot(global_temp_change_3, label="Spray amount: 10^7 kg, Spray location: equator")
plt.plot(global_temp_change_4, label="Spray amount: 10^7 kg, Spray location: pole")
plt.xlabel("Temperature change (°C)")
plt.ylabel("Global temperature change (°C)")
plt.legend()
plt.show()

从图中可以看出,随着喷洒量和喷洒位置的变化,全球地表温度降幅分布也会发生变化。喷洒量越大,温度降幅越大;喷洒位置集中在赤道附近,赤道地区的温度降幅更大。

更多内容具体可以看看我的下方名片!里面包含有认证杯一手资料与分析!
另外在赛中,我们也会陪大家一起解析认证杯的一些方向
关注 CS数模 团队,数模不迷路~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/305289.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

P1090 [NOIP2004 提高组] 合并果子

原题链接:[NOIP2004 提高组] 合并果子 / [USACO06NOV] Fence Repair G - 洛谷 目录 1. 题目描述 2. 思路分析 3. 代码实现 1. 题目描述 2. 思路分析 优先队列。 当堆数大于1时,每次将最小的两个(最小堆的堆顶)取出&#xff…

2017NOIP普及组真题 4. 跳房子

线上OJ: 一本通:http://ybt.ssoier.cn:8088/problem_show.php?pid1417\ 核心思想 首先、本题中提到 “ 至少 要花多少金币改造机器人,能获得 至少 k分 ”。看到这样的话语,基本可以考虑要使用 二分答案。 那么,本题中…

2024.4.11

1.思维导图 2.指针形式验证大小端存储 #include<myhead.h>int main(int argc, const char *argv[]) {int num 0x12345678;char* ptr (char *)&num;if(*ptr 0x12){printf("big endian\n");}else if(*ptr 0x78){printf("little endian\n");}r…

Struts2的入门:新建项目——》导入jar包——》jsp,action,struts.xml,web.xml——》在项目运行

文章目录 配置环境tomcat 新建项目导入jar包新建jsp界面新建action类新建struts.xml,用来配置action文件配置Struts2的核心过滤器&#xff1a;web.xml 启动测试给一个返回界面在struts.xml中配置以实现页面的跳转&#xff1a;result再写个success.jsp最后在项目运行 配置环境 …

C++ //练习 11.22 给定一个map<string, vector<int>>,对此容器的插入一个元素的insert版本,写出其参数类型和返回类型。

C Primer&#xff08;第5版&#xff09; 练习 11.22 练习 11.22 给定一个map<string, vector<int>>&#xff0c;对此容器的插入一个元素的insert版本&#xff0c;写出其参数类型和返回类型。 环境&#xff1a;Linux Ubuntu&#xff08;云服务器&#xff09; 工具…

Python 全栈体系【四阶】(二十七)

第五章 深度学习 三、OpenCV 5. 图像梯度处理 5.1 模糊处理 # 图像模糊处理示例 import cv2 import numpy as np## 中值滤波 im cv2.imread("../data/lena.jpg", 0) cv2.imshow("orig", im)# 调用medianBlur中值模糊 # 第二个参数为滤波模板的尺寸大小…

探索基于WebRTC的有感录屏技术开发流程

title: 探索基于WebRTC的有感录屏技术开发流程 date: 2024/4/7 18:21:56 updated: 2024/4/7 18:21:56 tags: WebRTC录屏技术屏幕捕获有感录屏MediaStream实时传输音频录制 第一章&#xff1a;技术原理 WebRTC&#xff08;Web Real-Time Communication&#xff09;是一种开放源…

vue源码解析——v-if和v-for哪个优先级高,如何避免两者同时使用

首先&#xff0c;官方不推荐v-if和v-for在同一个元素上使用。其次&#xff0c;如果两者同时使用&#xff0c;v-if和v-for的优先级怎么确定&#xff1f;在vue2和vue3中这两者的优先级顺序不一样。vue2是v-for优先&#xff0c;条件不存在时也会渲染多个注释节点。在vue3中进行了改…

互联网大厂ssp面经(操作系统:part1)

1. 什么是进程和线程&#xff1f;它们之间有什么区别&#xff1f; a. 进程是操作系统中运行的一个程序实例。它拥有独立的地址空间和资源&#xff0c;可以独立执行。 b. 线程是进程内的一个执行单元&#xff0c;一个进程可以包含多个线程。 c. 线程共享进程的资源&#xff0c;…

HarmonyOS开发实例:【数字管家app】

一&#xff0e;概述 本应用是基于RK3399开发板&#xff0c;使用OpenHarmony3.1-Release开发的应用。通过OpenHarmony的分布式技术&#xff0c;使多人能够一起画画。 1.应用运行效果图&#xff1a; 2.分布式画板使用示意图 如上图所示&#xff0c;用户1、用户2在各自本地端进行…

【Entity Framework】如何使用EF中的生成值

【Entity Framework】如何使用EF中的生成值 文章目录 【Entity Framework】如何使用EF中的生成值一、概述二、默认值三、计算列四、设置主键五、显示配置值生成六、设置日期/时间值生成6.1 创建时间戳6.2 更新时间戳 七、替代值生成八、无值生成九、总结 一、概述 数据库列的值…

【网站项目】校园订餐小程序

&#x1f64a;作者简介&#xff1a;拥有多年开发工作经验&#xff0c;分享技术代码帮助学生学习&#xff0c;独立完成自己的项目或者毕业设计。 代码可以私聊博主获取。&#x1f339;赠送计算机毕业设计600个选题excel文件&#xff0c;帮助大学选题。赠送开题报告模板&#xff…

软考121-上午题-【软件工程】-敏捷方法

一、敏捷方法 敏捷开发的总体目标是通过“尽可能早地、持续地对有价值的软件的交付”使客户满意。通过在软件开发过程中加入灵活性&#xff0c;敏捷方法使用户能够在开发周期的后期增加或改变需求。 敏捷过程的典型方法有很多&#xff0c;每一种方法基于一套原则&#xff0c;这…

国家统计局行政区划获取及入库ES实践

我们先看下最终效果&#xff1a; 1. ES索引新建 PUT administrative_division {"mappings": {"properties": {"province": {"type": "keyword"},"province_code": {"type": "keyword"},&q…

【前端Vue】Vue3+Pinia小兔鲜电商项目第5篇:整体认识和路由配置,本资源由 收集整理【附代码文档】

Vue3ElementPlusPinia开发小兔鲜电商项目完整教程&#xff08;附代码资料&#xff09;主要内容讲述&#xff1a;认识Vue3&#xff0c;使用create-vue搭建Vue3项目1. Vue3组合式API体验,2. Vue3更多的优势,1. 认识create-vue,2. 使用create-vue创建项目,1. setup选项的写法和执行…

mobaXterm使用密钥免密登录服务器,并且在Vscode中使用ppk密钥进行远程连接

本文介绍在mobaXterm上免密登录的过程&#xff0c;并且在vscode中也免密登录服务器。 1. mobaXterm免密登录服务器 需要首先说明的是&#xff0c;mobaXterm里有一个记住密码的功能。如果你只是不想手动输入密码&#xff0c;大多数情况下使用这一功能即可。 这里介绍的情况是…

今天讲讲MYSQL数据库事务怎么实现的!

目录 什么是数据库事务 Mysql如何保证原子性 Mysql如何保证持久性 MySQL怎么保证隔离性 事务隔离级别 脏读的解决 不可重复读的解决 幻读的解决 MVCC实现 Read View 那么RC、RR级别下的InnoDB快照读有什么不同&#xff1f; 什么是数据库事务 数据库事务是指一组数据…

vs2017离线安装(配合QT5.9.2使用)

以vs2017_Professional版本为例&#xff1a; 一、下载安装包vs2017_Professional.exe&#xff08;在线安装包即可&#xff09; 二、创建在目录&#xff1a;C:\vs2017_Professional_Package&#xff0c;把vs2017_Professional.exe放在该目录下。 ID&#xff1a; Microsoft.Vis…

一文了解AI边缘计算盒子是什么产品设备

大家听说过AI边缘计算盒子吗&#xff1f;不知道你有没有注意到&#xff0c;最近这款产品设备在科技圈内可是火得不要不要的&#xff01;那么&#xff0c;它究竟是什么东西呢&#xff1f;别着急&#xff0c;小编我今天就来给大家揭晓。 边缘计算盒子是什么? 边缘计算盒子是一种…

算法与程序设计(实验2)----分治法求最近点对问题

一&#xff0e;实验目的 掌握分治法思想。学会最近点对问题求解方法。 二、实验内容 1. 对于平面上给定的N个点&#xff0c;给出具有最短距离的两点。 2. 要求随机生成N个点的平面坐标&#xff0c;应用蛮力法编程计算出所有点对的最短距离。 3. 要求随机生成N个点的平面坐…