[大模型]Qwen1.5-4B-Chat WebDemo 部署

Qwen1.5-4B-Chat WebDemo 部署

Qwen1.5 介绍

Qwen1.5 是 Qwen2 的测试版,Qwen1.5 是基于 transformer 的 decoder-only 语言模型,已在大量数据上进行了预训练。与之前发布的 Qwen 相比,Qwen1.5 的改进包括 6 种模型大小,包括 0.5B、1.8B、4B、7B、14B 和 72B;Chat模型在人类偏好方面的性能显著提高;基础模型和聊天模型均支持多种语言;所有大小的模型均稳定支持 32K 上下文长度,无需 trust_remote_code。

环境准备

在autodl平台中租一个3090等24G显存的显卡机器,如下图所示镜像选择PyTorch–>2.0.0–>3.8(ubuntu20.04)–>11.8(11.3版本以上的都可以)
接下来打开刚刚租用服务器的JupyterLab, 图像 并且打开其中的终端开始环境配置、模型下载和运行演示。
在这里插入图片描述

pip换源和安装依赖包

# 升级pip
python -m pip install --upgrade pip
# 更换 pypi 源加速库的安装
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simplepip install modelscope==1.9.5
pip install "transformers>=4.37.0"
pip install streamlit==1.24.0
pip install sentencepiece==0.1.99
pip install accelerate==0.24.1
pip install transformers_stream_generator==0.0.4

模型下载

使用 modelscope 中的snapshot_download函数下载模型,第一个参数为模型名称,参数cache_dir为模型的下载路径。

在 /root/autodl-tmp 路径下新建 download.py 文件并在其中输入以下内容,粘贴代码后记得保存文件,如下图所示。并运行 python /root/autodl-tmp/download.py 执行下载,下载模型大概需要 2 分钟。

import torch
from modelscope import snapshot_download, AutoModel, AutoTokenizer
from modelscope import GenerationConfig
model_dir = snapshot_download('qwen/Qwen1.5-7B-Chat', cache_dir='/root/autodl-tmp', revision='master')

代码准备

/root/autodl-tmp路径下新建 chatBot.py 文件并在其中输入以下内容,粘贴代码后记得保存文件。下面的代码有很详细的注释,大家如有不理解的地方,欢迎提出issue。

# 导入所需的库
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
import torch
import streamlit as st# 在侧边栏中创建一个标题和一个链接
with st.sidebar:st.markdown("## Qwen1.5 LLM")"[开源大模型食用指南 self-llm](https://github.com/datawhalechina/self-llm.git)"# 创建一个滑块,用于选择最大长度,范围在0到1024之间,默认值为512max_length = st.slider("max_length", 0, 1024, 512, step=1)# 创建一个标题和一个副标题
st.title("💬 Qwen1.5 Chatbot")
st.caption("🚀 A streamlit chatbot powered by Self-LLM")# 定义模型路径
mode_name_or_path = '/root/autodl-tmp/qwen/Qwen1.5-7B-Chat'# 定义一个函数,用于获取模型和tokenizer
@st.cache_resource
def get_model():# 从预训练的模型中获取tokenizertokenizer = AutoTokenizer.from_pretrained(mode_name_or_path, use_fast=False)# 从预训练的模型中获取模型,并设置模型参数model = AutoModelForCausalLM.from_pretrained(mode_name_or_path, torch_dtype=torch.bfloat16,  device_map="auto")return tokenizer, model# 加载Qwen1.5-4B-Chat的model和tokenizer
tokenizer, model = get_model()# 如果session_state中没有"messages",则创建一个包含默认消息的列表
if "messages" not in st.session_state:st.session_state["messages"] = [{"role": "assistant", "content": "有什么可以帮您的?"}]# 遍历session_state中的所有消息,并显示在聊天界面上
for msg in st.session_state.messages:st.chat_message(msg["role"]).write(msg["content"])# 如果用户在聊天输入框中输入了内容,则执行以下操作
if prompt := st.chat_input():# 将用户的输入添加到session_state中的messages列表中st.session_state.messages.append({"role": "user", "content": prompt})# 在聊天界面上显示用户的输入st.chat_message("user").write(prompt)# 构建输入     input_ids = tokenizer.apply_chat_template(st.session_state.messages,tokenize=False,add_generation_prompt=True)model_inputs = tokenizer([input_ids], return_tensors="pt").to('cuda')generated_ids = model.generate(model_inputs.input_ids, max_new_tokens=512)generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)]response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]# 将模型的输出添加到session_state中的messages列表中st.session_state.messages.append({"role": "assistant", "content": response})# 在聊天界面上显示模型的输出st.chat_message("assistant").write(response)# print(st.session_state)

运行 demo

在终端中运行以下命令,启动streamlit服务,并按照 autodl 的指示将端口映射到本地,然后在浏览器中打开链接 http://localhost:6006/ ,即可看到聊天界面。

streamlit run /root/autodl-tmp/chatBot.py --server.address 127.0.0.1 --server.port 6006

如下所示:

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/306282.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【论文精读】 GPT,GPT-2,GPT-3:大力出奇迹

系列文章目录 【论文精读】Transformer:Attention Is All You Need 【论文精读】BERT:Pre-training of Deep Bidirectional Transformers for Language Understanding 文章目录 系列文章目录一、前言二、GPT(一)文章概览&#xf…

用Python编写GUI程序将JPEG文件按文件名顺序插入PDF文件

在Python编程中,处理文件和图像是常见的任务之一。最近,我遇到了一个有趣的问题:如何通过编写一个GUI程序来将一个文件夹中的JPEG文件按文件名顺序插入到一个新的PDF文件中?在这篇博客中,我将分享我使用Python、wxPyth…

智能工业电脑在智慧电力中实现全程实时监控与调控

可视化编程工业电脑在化工、石油、电力等行业过程控制领域扮演着越来越重要的角色。这些基于ARM架构设计的嵌入式工业计算机凭借其高性能、低功耗以及出色的实时处理能力,有效提升了各行业生产过程的安全性和效率。 钡铼技术ARMxy系列采用嵌入式Linux 系统开发的产品…

从零开始写 Docker(十)---实现 mydocker logs 查看容器日志

本文为从零开始写 Docker 系列第十篇,实现类似 docker logs 的功能,使得我们能够查查看容器日志。 完整代码见:https://github.com/lixd/mydocker 欢迎 Star 推荐阅读以下文章对 docker 基本实现有一个大致认识: 核心原理&#x…

Harmony鸿蒙南向外设驱动开发-Codec

功能简介 OpenHarmony Codec HDI(Hardware Device Interface)驱动框架基于OpenMax实现了视频硬件编解码驱动,提供Codec基础能力接口给上层媒体服务调用,包括获取组件编解码能力、创建组件、参数设置、数据的轮转和控制、以及销毁…

关于QEMU模拟器本身以及和CXL功能模拟相关内容的学习

前言:在写Paper的时候,发现直接引用QEMU官网关于QEMU的介绍实在是一个图省事儿的方法,但是并不可取。即使是一小段,也要去真正了解QEMU的基本原理,如何实现功能模拟,以及目前实现的与CXL相关的内容。 注&am…

Apache中间件漏洞

目录 什么是Apache Apache文件上传(CVE-2017-15715) Apache后缀解析 什么是Apache Apache(音译为阿帕奇)是世界使用排名第一的Web服务器软件。它可以运行在几乎所有广泛使用的计算机平台上,由于其跨平台和安全性被广泛使用,是最…

景芯2.5GHz A72训练营dummy添加(一)

景芯A72做完布局布线之后导出GDS,然后进行GDS merge,然后用Calibre对Layout添加Dummy。在28nm以及之前的工艺中,Dummy metal对Timing的影响不是很大,当然Star RC也提供了相应的解决方案,可以考虑Dummy metal来抽取RC。…

03-JAVA设计模式-享元模式

享元模式 什么是享元模式 享元模式(Flyweight Pattern)是一种对象结构型设计模式,用于减少创建对象的数量,以减少内存占用和提高系统性能。它通过共享已经存在的对象来避免创建大量相似的对象,从而降低内存消耗。 在…

韦东山freeRTOS第一天课程笔记

文章目录 一、课程目标二、堆和栈三、创建freertos任务 一、课程目标 双架构 ARM: 目前主流的架构,用得最广,芯片公司需要付费购买,再搭配各种模块才能设计出芯片。 RISC-V: 后起之秀,开源、免费。 双系统…

【考研数学】《660》+《880》高分搭配方法

📝《660题》和《880题》高效刷题方法 1️⃣做题要有针对性,不要为了做题而做题 💪660和880题虽然多,但是你不用全都做完,你可以把它当成是题源,里面的每一道题都很经典,如果搞懂一道&#xff…

练习6 beach beauty

文章目录 图片展示 图片展示

第十三章 OpenGL ES-RGB、HSV、HSL模型介绍

第十三章 OpenGL ES-RGB、HSV、HSL模型详细介绍 第一章 OpenGL ES 基础-屏幕、纹理、顶点坐标 第二章 OpenGL ES 基础-GLSL语法简单总结 第三章 OpenGL ES 基础-GLSL渲染纹理 第四章 OpenGL ES 基础-位移、缩放、旋转原理 第五章 OpenGL ES 基础-透视投影矩阵与正交投影矩阵…

Java基础第十课——类与对象(1)

前面二白的九讲属于Java基础方面的内容,总体来说偏基础和简单,能完成的操作也有限,有兴趣的同学可以写一写相关的管理系统,后面二白也会上传一些自己敲的小系统,下面就要开始Java面对对象的知识内容了,从这…

特别详细的Spring Cloud 系列教程2:微服务网关gateway的启动

继上一篇:特别详细的Spring Cloud 系列教程1:服务注册中心Eureka的启动 在比较多的教程和书籍里,spring cloud的微服务网关用的Zuul。然而,zuul已经不被官方提倡,现在提倡用的是spring cloud gateway。因为gateway的整…

MySQL相关问题快问快答

我写这篇文章的目的只有一个:通过这些问题来帮助我去将我脑子里的MySQL脑图给巩固熟悉,通过回答这些问题,让我对脑子里的MySQL知识有更深的印象,当什么时候我的MySQL脑图不熟的时候,我就可以拿这篇文章来去巩固一下&am…

数字化智慧养老:引领老年人融入科技时代新生活

hello宝子们...我们是艾斯视觉擅长ui设计和前端开发10年经验!希望我的分享能帮助到您!如需帮助可以评论关注私信我们一起探讨!致敬感谢感恩! 人类社会已经步入了一个全新的数字时代。在这个时代,互联网、大数据、人工智…

【Linux进阶之路】地址篇

文章目录 一、ipv4地址1. 基本概念2. 分类3.CIDR4.特殊的ip地址 二、IP协议1. 协议字段2.分片与重组3.路由 三、NAT技术1.公有和私有2.NAT3.NAPT 四、ARP协议1.MAC地址2.ARP 五、DHCP协议六、DNS协议尾序 一、ipv4地址 1. 基本概念 概念:IP地址,英文全…

FHE全同态加密简介

1. 何为FHE? FHE (Fully homomorphic encryption): 是一种隐私技术,支持直接对密文进行计算,而无需对密文先解密再计算。即,任何第三方或云厂商,都可对敏感信息的密文进行处理,而无需访问密文内…

爬虫现在还有那么吃香嘛?

Python 作为一种广泛应用的编程语言,在 Web 开发、大数据开发、人工智能开发和嵌入式开发等领域都有着重要的应用。 Python 的易学性、清晰性和可移植性等特点使它得到很多技术人士的喜爱。对于数据科学和机器学习领域的程序员来说,Python 提供了强大的…