深度学习pytorch实战第P3周--实现天气识别

>- **🍨 本文为[🔗365天深度学习训练营](https://mp.weixin.qq.com/s/0dvHCaOoFnW8SCp3JpzKxg) 中的学习记录博客**
>- **🍖 原作者:[K同学啊](https://mtyjkh.blog.csdn.net/)**

引言

1.复习上周

深度学习pytorch实战-第P2周-彩色图片识别icon-default.png?t=N7T8http://t.csdnimg.cn/f5l6F对于上周的学习,数据集是下载的

2.摆正心态

正如K同学所说,学到第三周左右就会有点感觉了,还真是这样,引领我入门,激发了我的兴趣,同时感谢同济子豪兄。

3.本机环境

见上文

4.学习目标

扎扎实实学好习,走好每一步。

一、前期准备

1.设置GPU

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasetsimport os,PIL,pathlib,randomdevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")device

2.导入数据

data_dir = './weather_photos/'
print(data_dir)
data_dir = pathlib.Path(data_dir)data_paths = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[1] for path in data_paths]
classeNames
  • 第一步:使用pathlib.Path()函数将字符串类型的文件夹路径转换为pathlib.Path对象。
  • 第二步:使用glob()方法获取data_dir路径下的所有文件路径,并以列表形式存储在data_paths中。
  • 第三步:通过split()函数对data_paths中的每个文件路径执行分割操作,获得各个文件所属的类别名称,并存储在classeNames
  • 第四步:打印classeNames列表,显示每个文件所属的类别名称。

3.数据可视化

import matplotlib.pyplot as plt
from PIL import Image# 指定图像文件夹路径
image_folder = './weather_photos/cloudy/'# 获取文件夹中的所有图像文件
image_files = [f for f in os.listdir(image_folder) if f.endswith((".jpg", ".png", ".jpeg"))]# 创建Matplotlib图像
fig, axes = plt.subplots(3, 8, figsize=(16, 6))# 使用列表推导式加载和显示图像
for ax, img_file in zip(axes.flat, image_files):img_path = os.path.join(image_folder, img_file)img = Image.open(img_path)ax.imshow(img)ax.axis('off')# 显示图像
plt.tight_layout()
plt.show()

 

 图片大小处理

total_datadir = './data/'# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])total_data = datasets.ImageFolder(total_datadir,transform=train_transforms)
total_data

划分数据集(4:1)

train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset, test_dataset

 

batch_size = 32train_dl = torch.utils.data.DataLoader(train_dataset,batch_size=batch_size,shuffle=True,num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,batch_size=batch_size,shuffle=True,num_workers=1)
for X, y in test_dl:print("Shape of X [N, C, H, W]: ", X.shape)print("Shape of y: ", y.shape, y.dtype)break

 

二、构建简单的CNN网络

对于一般的CNN网络来说,都是由特征提取网络和分类网络构成,其中特征提取网络用于提取图片的特征,分类网络用于将图片进行分类

参数详解见上文。

import torch.nn.functional as Fclass Network_bn(nn.Module):def __init__(self):super(Network_bn, self).__init__()"""nn.Conv2d()函数:第一个参数(in_channels)是输入的channel数量第二个参数(out_channels)是输出的channel数量第三个参数(kernel_size)是卷积核大小第四个参数(stride)是步长,默认为1第五个参数(padding)是填充大小,默认为0"""self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0)self.bn1 = nn.BatchNorm2d(12)self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0)self.bn2 = nn.BatchNorm2d(12)self.pool1 = nn.MaxPool2d(2,2)self.conv4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0)self.bn4 = nn.BatchNorm2d(24)self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)self.bn5 = nn.BatchNorm2d(24)self.pool2 = nn.MaxPool2d(2,2)self.fc1 = nn.Linear(24*50*50, len(classeNames))def forward(self, x):x = F.relu(self.bn1(self.conv1(x)))      x = F.relu(self.bn2(self.conv2(x)))     x = self.pool1(x)                        x = F.relu(self.bn4(self.conv4(x)))     x = F.relu(self.bn5(self.conv5(x)))  x = self.pool2(x)                        x = x.view(-1, 24*50*50)x = self.fc1(x)return xdevice = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))model = Network_bn().to(device)
model

三、训练模型

1.设置超参数

loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-4 # 学习率
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)

2.编写训练函数

# 训练循环
def train(dataloader, model, loss_fn, optimizer):size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片num_batches = len(dataloader)   # 批次数目,1875(60000/32)train_loss, train_acc = 0, 0  # 初始化训练损失和正确率for X, y in dataloader:  # 获取图片及其标签X, y = X.to(device), y.to(device)# 计算预测误差pred = model(X)          # 网络输出loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失# 反向传播optimizer.zero_grad()  # grad属性归零loss.backward()        # 反向传播optimizer.step()       # 每一步自动更新# 记录acc与losstrain_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()train_loss += loss.item()train_acc  /= sizetrain_loss /= num_batchesreturn train_acc, train_loss

 

3.编写测试函数

def test (dataloader, model, loss_fn):size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片num_batches = len(dataloader)          # 批次数目,313(10000/32=312.5,向上取整)test_loss, test_acc = 0, 0# 当不进行训练时,停止梯度更新,节省计算内存消耗with torch.no_grad():for imgs, target in dataloader:imgs, target = imgs.to(device), target.to(device)# 计算losstarget_pred = model(imgs)loss        = loss_fn(target_pred, target)test_loss += loss.item()test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()test_acc  /= sizetest_loss /= num_batchesreturn test_acc, test_loss

4.正式训练

epochs     = 20
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []for epoch in range(epochs):model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)model.eval()epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')

 也不是伦茨越多越好

四、结果可视化

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率epochs_range = range(epochs)plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

五、保存模型并预测

# 1.保存模型# torch.save(model, 'model.pth') # 保存整个模型
torch.save(model.state_dict(), 'model_state_dict.pth') # 仅保存状态字典# 2. 加载模型 or 新建模型加载状态字典# model2 = torch.load('model.pth') 
# model2 = model2.to(device) # 理论上在哪里保存模型,加载模型也会优先在哪里,但是指定一下确保不会出错model2 = Network_bn().to(device) # 重新定义模型
model2.load_state_dict(torch.load('model_state_dict.pth')) # 加载状态字典到模型# 3.图片预处理
from PIL import Image
import torchvision.transforms as transforms# 输入图片预处理
def preprocess_image(image_path):image = Image.open(image_path)transform = transforms.Compose([transforms.Resize((224, 224)),  # 假设使用的是224x224的输入transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),])image = transform(image).unsqueeze(0)  # 增加一个批次维度return image# 4.预测函数(指定路径)
def predict(image_path, model):model.eval()  # 将模型设置为评估模式with torch.no_grad():  # 关闭梯度计算image = preprocess_image(image_path)image = image.to(device)  # 确保图片在正确的设备上outputs = model(image)_, predicted = torch.max(outputs, 1)  # 获取最可能的预测类别return predicted.item()# 5.预测并输出结果
image_path = "./weather_photos/shine/shine101.jpg"  # 替换为你的图片路径
prediction = predict(image_path, model)
class_names = ["cloudy", "rain", "shine", "sunrise"]  # Replace with your class labels
predicted_label = class_names[prediction]
print("Predicted class:", predicted_label)

 

Predicted class: shine
# 选取dataloader中的一个图像进行判断
import numpy as np
# 选取图像
imgs,labels = next(iter(train_dl))
image,label = imgs[0],labels[0]# 选取指定图像并展示
# 调整维度为 [224, 224, 3]
image_to_show = image.numpy().transpose((1, 2, 0))# 归一化
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
image_to_show = std * image_to_show + mean
image_to_show = np.clip(image_to_show, 0, 1)# 显示图像
plt.imshow(image_to_show)
plt.show()# 将图像转移到模型所在的设备上(如果使用GPU)
image = image.to(device)# 预测
with torch.no_grad():output = model(image.unsqueeze(0))  # 添加批次维度# 输出预测结果
_, predicted = torch.max(output, 1)
class_names = ["cloudy", "rain", "shine", "sunrise"]  # Replace with your class labels
predicted_label = class_names[predicted]
print(f"Predicted: {predicted.item()}, Actual: {label.item()}")

 如何保存模型可以看这篇icon-default.png?t=N7T8http://t.csdnimg.cn/yCkr7

六,总结

构建数据集中

此次数据集不是直接从网上下载的,而是保存在本地的,那么我们构建数据集的代码就有3步了,第一步就是从我们的本地获取数据集,使用pathlib将路径转化为pathlib.path对象,使用glob方法获取路径下的所有文件路径并保存到datapath,通过spilt分割路径并保存在classname中,打印classname列表。这是在确保路径文件夹正确,且分类正确。接下来可以使用matplotlib.pyplot和PIL来获取图片,并可视化,过程中使用列表推导式加载和显示图像,第二步划分数据集,4:1比例划分并保存为dataset对象,第三步定义batch_size大小,使用dataloder加载器来管理数据,

构建cnn网络中

主要是特征提取网络和分类网络的构建,首先进行一个网络初始化init,定义网络结构,卷积层1,bn层1,(nn.BatchNorm2d(12) 是 PyTorch 中的一个批量归一化层。批量归一化用于加速神经网络的训练过程,并提高模型的泛化能力。在卷积神经网络中),卷积2,bn2,池化1,卷积4,bn层4,卷积5,bn层5,池化层2,全连接层1,然后定义进行前向传播结构,并在每一层(卷积+bn)进行relu函数返回给x,然后再池化,再relu,最后拉平,使用view函数,并传给fc层进行分类。

训练模型中

设置超参数,loss一般用交叉熵,学习率一般0.0001,opt采用sgd或者adam

编写训练函数中

编写训练函数时候,要使用size知道dataloaer加载的dataset大小长度,每batchnum就是dataloder的长度,定义训练集损失和准确率,获取图片和标签从dataloder中,计算误差,进行啊反向传播更新参数,每一步自动更新,记录acc和loss,最后计算train的acc和loss

编写测试函数同理

同理,再取图像之前加个当不进行训练时,停止梯度更新就行

来到了正式训练

定义epoch轮次,训练和特使的acc和loss定义,便于后续存储,轮次循环,model.train和model.eval,然后把每一批次的准确率loss都存在列表里,最后输出

最后可视化

定义plt窗口,可视化列表train_acc等等

保存模型

参上,现在我还有点不懂,慢慢学吧

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/309926.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Upload-labs(Pass-14 - Pass-16)

Pass-14 (图片马,判断文件类型) 图片的格式在防护中通常是不会使用后缀进行判断的依据,文件头是文件开头的一段二进制码,不同类型的图片也就会有不同的二进制头。   JPEG (jpg),文件头:FF D…

qemu源码解析一

基于qemu9.0.0 简介 QEMU是一个开源的虚拟化软件,它能够模拟各种硬件设备,支持多种虚拟化技术,如TCG、Xen、KVM等 TCG 是 QEMU 中的一个组件,它可以将高级语言编写的代码(例如 C 代码)转换为可在虚拟机中…

WIFI详解及周边拓展

一、WiFi协议简介 WiFi协议,也称为无线保真技术,是一种允许电子设备通过无线方式在局域网(WLAN)和互联网上进行通信的技术标准。WiFi协议是基于IEEE 802标准的子系列标准协议,由电气和电子工程师协会制定。随着移动设备…

在一台恢复测试机器上验证oracle备份有效性

一 目的 定期将生产环境oracle数据库恢复到一台测试环境数据库服务器上,以验证备份是否有效,是否能正常恢复。 二 环境 这里以恢复orcl1库为例,计划在orcl这个实例上进行恢复测试。 三 实验步骤 3.1 在目标端创建和源端一样的备份目录 ①…

如何在浏览器Web前端在线编辑PPT幻灯片?

有时候在项目中我们会遇到需要在网页在线打开并编辑PPT文档保存到本地或者服务器指定位置,猿大师办公助手可以很方便的调用本机Office实现在网页上编辑PPT幻灯片,效果与本机Office打开PPT完全一样。 猿大师办公助手支持完整嵌入模式,也就是本…

nginx的启动,systemctl管理

service unit file文件通常由三部分组成: [Unit]:定义与Unit类型无关的通用选项;用于提供unit的描述信息、unit行为及依赖关系等 [Service]:与特定类型相关的专用选项;此处为Service类型 [Install]:定义…

【SCI绘图】【热力图系列1 R】多特征相关性分析热力图R语言实现

SCI,CCF,EI及核心期刊绘图宝典,爆款持续更新,助力科研! 本期分享: 【SCI绘图】【热力图系列1 R】多特征相关性分析热力图R语言实现 1.环境准备 library(gplots) library(RColorBrewer) 2.数据示例 ###…

UE5学习日记——制作多语言版本游戏,同时初步学习UI制作、多语言化、控制器配置、独立进程测试、打包配置和快速批量翻译等

所有的文本类,无论变量还是控件等都能实现本地化,以此实现不同语言版本。 在这里先将重点注意标注一下: 所有文本类的变量、控件等都可以多语言;本地化控制板中收集、编译时,别忘了编译这一步;支持批量复制…

第十五届蓝桥杯c++b组赛后复盘和真题展示

题目变成八道了,分数一百分可能,感觉拿奖难度还是很高 第一题是一个简单的握手问题 答案算出来1204,纯手写 第二题是 物理题 纯蒙,随便猜了个轨迹,答案具体忘了,最后是 .45 第三题暴力 第四题 我是傻逼…

Zookeeper中的节点类型和实现持久化的两种方式

进入zookeeper的bin目录,执行./zkServer.sh start ../conf/zoo.cfg启动! Zookeeper内部的数据模型 类似于数据结构中的树,同时也很像文件系统的目录, 节点的类型 持久节点:create /znode 创建出的节点&#xff0c…

永磁同步电机无感FOC(扩展卡尔曼滤波EKF位置观测控制)

文章目录 1、前言2、扩展卡尔曼滤波器原理2.1 预测阶段(时间更新阶段)2.2 校正阶段(状态更新阶段) 3、永磁同步电机EKF的模型4、永磁同步电机EKF的无位置状态观测仿真4.1 核心模块(在滑膜、龙伯格、磁链等观测器基础上…

从零自制docker-8-【构建实现run命令的容器】

文章目录 log "github.com/sirupsen/logrus"args...go moduleimport第三方包失败package和 go import的导入go build . 和go runcli库log.SetFormatter(&log.JSONFormatter{})error和nil的关系cmd.Wait()和cmd.Start()arg……context.Args().Get(0)syscall.Exec和…

GRE/MGRE详解

GRE GRE:通用路由封装,是标准的三层隧道技术,是一种点对点的隧道技术; 该技术可以实现不同的网络之间安全的访问; 如上:可以使用该技术搭建一条专线,实现公司A与分公司A1之间相互通信&#xf…

(处理流)转换流与对象流

1.字符编码与解码. (1). 字符编码 : 将字符,字符串,字符数组------> 字节,字节数组. (2). 字节,字节数组------>字符,字符串,字符数组. 如果希望程序在读取文件时(也就是解码)不…

Linux多进程开发2 - 进程间通信

1、进程间通信的概念 进程是一个独立的资源分配单元,不同进程之间的资源是独立的,没有关联,不能在一个进程中直接访问另一个进程的资源。但是,进程不是孤立的,不同的进程需要进行信息的交换和状态的传递等&…

【算法基础】插入排序与二分查找、升级二分查找

文章目录 1. 插入排序1.1 插入排序的思想1.2 插入排序的实现 2. 普通二分查找2.1 普通二分查找的思想2.2 普通二分查找的实现 3. 升级二分查找3.1 升级二分查找思想3.2 升级二分查找实现 1. 插入排序 1.1 插入排序的思想 插入排序很类似于已有一副有序的扑克牌,不断…

儿童对讲机玩具AW30N方案

一、儿童对讲机简介 儿童对讲机一种专为孩子们设计的通讯设备,可以让父母与孩子之间进行双向通讯,增强亲子关系,增强孩子的可玩性。儿童对讲机近几年发展的比较快,相比之前的方案,在设计、生产、成本都优化了很多&…

Win10 使用Telnet

命令行 telnet 127.0.0.1 80 调试是否能连接服务 输入exit 回车即可退出 相比于ping的不同

Java编译期注解处理器AbstractProcessor使用

我们接触的注解主要分为以下两类 运行时注解:通过反射在运行时动态处理注解的逻辑编译时注解:通过注解处理器在编译期动态处理相关逻辑 编译期注解我们常用的有Lombok,在class文件中自动生成get和set方法 解编译期处理流程最关键的一个类就…

【TCP套接字编程,UDP套接字编程】

文章目录 TCP套接字编程Socket编程Socket 编程TCP套接字编程TCPsocket编程C/S socket 交互: TCP数据结构 sockaddr_in数据结构 hostent UDP套接字编程UDP Socket编程Client/server socket 交互: UDP TCP套接字编程 Socket编程 应用进程使用传输层提供的服务才能交换报文。实现…