【C++航海王:追寻罗杰的编程之路】异常——错误处理方式之一

目录

引言

1 -> C语言传统的处理错误的方式

2 -> C++异常概念

3 -> 异常的使用

3.1 -> 异常的抛出和捕获

3.2 -> 异常的重新抛出

3.3 -> 异常规范

4 -> 自定义异常体系

5 -> C++标准库的异常体系

6 -> 异常的优缺点


引言

在C++编程中,异常处理是一种重要的技术,用于处理程序在运行时可能出现的错误或意外情况。异常是指在程序执行过程中发生的某种不正常的情况,例如除以零、内存访问错误或无效的输入等。传统的错误处理方式通常涉及使用错误代码或返回特殊值来指示问题,但这种方式可能会导致代码混乱、繁琐,并且容易被忽略或处理不当。

异常处理提供了一种更为结构化和灵活的方法来处理异常情况。当异常发生时,程序可以抛出(throw)一个异常对象,然后在适当的位置捕获(catch)并处理该异常。这种机制使得程序可以将错误处理逻辑与正常逻辑分离开来,提高了代码的可读性和可维护性

1 -> C语言传统的处理错误的方式

传统的错误处理机制:

  1. 终止程序,如assert,缺陷:用户难以接受。如发生内存错误,除以零错误时就会终止程序。
  2. 返回错误码,缺陷:需要程序员自己去查找对应的错误。如系统的很多库的接口函数都是通过把错误码放到error中,表示错误。

实际中C语言基本都是使用返回错误码的方式处理错误,部分情况下使用终止程序处理非常严重的错误。

2 -> C++异常概念

异常是一种处理错误的方式,当一个函数发现自己无法处理的错误时就可以抛出异常,让函数的直接或间接调用者处理这个错误。

  • throw:当问题出现时,程序会抛出一个异常。这是通过使用throw关键字来完成的。
  • catch:在想要处理问题的地方,通过异常处理程序捕获异常。catch关键字用于捕获异常,可以有多个catch进行捕获。
  • try:try块中的代码标识将被激活的特定异常,它后面通常跟着一个或多个catch块。

如果有一个块抛出一个异常,捕获异常的方法会使用trycatch关键字。try块中放置可能抛出异常的代码,try块中的代码被称为保护代码。使用try/catch语句的语法如下:

try
{// 保护的标识代码
}
catch (ExceptionName e1)
{// catch 块
}
catch (ExceptionName e2)
{// catch 块
}
catch (ExceptionName e3)
{// catch 块
}

3 -> 异常的使用

3.1 -> 异常的抛出和捕获

异常的抛出和匹配原则

  1. 异常是通过抛出对象而引发的,该对象的类型决定了应该激活哪个catch的处理代码。
  2. 选中的处理代码是调用链中与该对象类型匹配且离抛出异常位置最近的那一个。
  3. 抛出异常对象后,会生成一个异常对象的拷贝,因为抛出的异常对象可能是一个临时对象,所以会生成一个拷贝对象,这个拷贝的临时对象会在被catch以后销毁。(类似函数的传值返回)
  4. catch()可以捕获任意类型的异常,问题是不知道异常错误是什么。
  5. 实际中抛出和捕获的匹配原则有个例外,并不都是类型完全匹配,可以抛出的派生类对象,使用基类捕获。

在函数调用链中异常栈展开匹配原则

  1. 首先检查throw本身是否在try块内部,如果是在查找匹配的catch语句。如果有匹配,则调到catch的地方进行处理。
  2. 没有匹配的catch则退出当前函数栈,继续在调用函数的栈中进行查找匹配的catch。
  3. 如果达到main函数的栈,依旧没有匹配的,则终止程序。这个沿着调用链查找匹配的catch子句的过程称为栈展开。所以实际中我们都要在最后加一个catch()捕获任意类型的异常,否则当有异常没捕获,程序就会直接终止。
  4. 找到匹配的catch子句并处理以后,会继续沿着catch子句后面继续执行。
#define  _CRT_SECURE_NO_WARNINGS 1#include <iostream>
using namespace std;double Division(int a, int b)
{// 当b == 0时抛出异常if (b == 0)throw "Division by zero condition!";elsereturn ((double)a / (double)b);
}
void Func()
{int len, time;cin >> len >> time;cout << Division(len, time) << endl;
}
int main()
{try {Func();}catch (const char* errmsg){cout << errmsg << endl;}catch (...) {cout << "unkown exception" << endl;}return 0;
}

3.2 -> 异常的重新抛出

有可能单个的catch不能完全处理一个异常,在进行一些矫正处理后,希望再交给更外层的调用链函数来处理,catch则可以通过重新抛出将异常传递给更上层的函数进行处理。

double Division(int a, int b)
{// 当b == 0时抛出异常if (b == 0){throw "Division by zero condition!";}return (double)a / (double)b;
}void Func()
{// 这里可以看到如果发生除0错误抛出异常,另外下面的array没有得到释放。// 所以这里捕获异常后并不处理异常,异常还是交给外面处理,这里捕获了再// 重新抛出去。int* array = new int[10];try {int len, time;cin >> len >> time;cout << Division(len, time) << endl;}catch (...){cout << "delete []" << array << endl;delete[] array;throw;}// ...cout << "delete []" << array << endl;delete[] array;
}int main()
{try{Func();}catch (const char* errmsg){cout << errmsg << endl;}return 0;
}

3.3 -> 异常规范

  1. 异常规格说明的目的是为了让函数使用者知道该函数可能抛出的异常有哪些。可以在函数的后面接throw(类型),列出这个函数可能抛出的所有异常类型。
  2. 函数的后面接throw(),表示函数不抛异常。
  3. 若无异常接口声明,则此函数可以抛出任何类型的异常。

4 -> 自定义异常体系

实际使用中很多公司都会自定义自己的异常体系进行规范的异常管理,因为一个项目中如果大家随意抛异常,那么外层的调用者基本就没办法使用,所以实际中都会定义一套继承的规范体系。这样大家抛出的都是继承的派生类对象,捕获一个基类就可以了。

// 服务器开发中通常使用的异常继承体系
class Exception
{
public:Exception(const string& errmsg, int id):_errmsg(errmsg), _id(id){}virtual string what() const{return _errmsg;}protected:string _errmsg;int _id;
};class SqlException : public Exception
{
public:SqlException(const string& errmsg, int id, const string& sql):Exception(errmsg, id), _sql(sql){}virtual string what() const{string str = "SqlException:";str += _errmsg;str += "->";str += _sql;return str;}private:const string _sql;
};class CacheException : public Exception
{
public:CacheException(const string& errmsg, int id):Exception(errmsg, id){}virtual string what() const{string str = "CacheException:";str += _errmsg;return str;}
};class HttpServerException : public Exception
{
public:HttpServerException(const string& errmsg, int id, const string& type):Exception(errmsg, id), _type(type){}virtual string what() const{string str = "HttpServerException:";str += _type;str += ":";str += _errmsg;return str;}private:const string _type;
};void SQLMgr()
{srand(time(0));if (rand() % 7 == 0){throw SqlException("权限不足", 100, "select * from name = '张三'");}//throw "xxxxxx";
}void CacheMgr()
{srand(time(0));if (rand() % 5 == 0){throw CacheException("权限不足", 100);}else if (rand() % 6 == 0){throw CacheException("数据不存在", 101);}SQLMgr();
}void HttpServer()
{// ...srand(time(0));if (rand() % 3 == 0){throw HttpServerException("请求资源不存在", 100, "get");}else if (rand() % 4 == 0){throw HttpServerException("权限不足", 101, "post");}CacheMgr();
}int main()
{while (1){this_thread::sleep_for(chrono::seconds(1));try {HttpServer();}catch (const Exception& e) // 这里捕获父类对象就可以{// 多态cout << e.what() << endl;}catch (...){cout << "Unkown Exception" << endl;}}return 0;
}

5 -> C++标准库的异常体系

C++提供了一系列标准的异常,我们可以在程序中使用这些标准的异常。它们是以父子类层次结构组。

异常描述
std::exception该异常是所有标准C++异常的父类
std::bad_alloc该异常可以通过new抛出
std::bad_cast该异常可以通过dynamic_cast抛出
std::bad_exception处理C++程序中无法预测的异常时非常有用
std::bad_typeid该异常可以通过typeid抛出
std::logic_error理论上可以通过读取代码来检测到的异常
std::domain_error当使用了一个无效的数字域时,会抛出该异常
std::invalid_argument当使用了无效参数时,会抛出该异常
std::length_error当创建了太长的std::string时,会抛出该异常
std::out_of_range该异常可以通过方法抛出,例如std::vector和std::bitset<>::operator[]()
std::runtime_error理论上不可以通过读取代码来检测到的异常
std::overflow_error当发生数学上溢时,会抛出该异常
std::range_error当尝试存储超出范围的值时,会抛出该异常
std::underflow_error当发生数学下溢时,会抛出该异常

说明:实际中我们可以去继承exception类实现自己的异常类。但是实际中很多公司像上面一样自己定义一套异常继承体系。因为C++标准库设计的不够好用。

int main()
{try{vector<int> v(10, 5);// 这里如果系统内存不够也会抛异常v.reserve(1000000000);// 这里越界会抛异常v.at(10) = 100;}catch (const exception& e) // 这里捕获父类对象就可以{cout << e.what() << endl;}catch (...){cout << "Unkown Exception" << endl;}return 0;
}

6 -> 异常的优缺点

C++异常的优点:

  1. 异常对象定义好了,相比错误码的方式可以清晰准确的展示出错误的各种信息,甚至可以包含堆栈调用的信息,这样可以帮助更好的定位程序的bug
  2. 返回错误码的传统方式有个很大的问题就是,在函数调用链中,深层的函数返回了错误,那么我们要层层返回错误,最外层才能拿到错误。
  3. 很多的第三方库都包含异常,比如boost、gtest、gmock等常用的库,那么我们使用它们也需要使用异常。
  4. 部分函数使用异常更好处理,比如构造函数没用返回值,不方便使用错误码方式处理。比如T& operator这样的函数,如果pos越界了只能使用异常或者终止程序处理,没办法通过返回值表示错误。

C++异常的缺点:

  1. 异常会导致程序的执行流乱跳,并且非常混乱,并且是运行时出错抛异常就会乱跳。这会导致我们跟踪调试时以及分析程序时,比较困难。
  2. 异常会有一些性能的开销。
  3. C++没有垃圾回收机制,资源需要自己管理。有了异常非常容易导致内存泄漏、死锁等异常安全问题。这个需要使用RAII来处理资源的管理问题。学习成本较高。
  4. C++标准库的异常体系定义得不好,导致大家各自定义各自的异常体系,非常混乱。
  5. 异常尽量规范使用,否则后果不堪设想,随意抛异常,外层捕获的用户苦不堪言。所以异常规范有两点:一、抛出异常类型都继承自一个基类。二、函数是否抛异常、抛什么异常,都使用func() throw();的方式规范化。

感谢各位大佬支持!!!

互三啦!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/311274.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MySQL中的SQL高级语句[二]

使用语言 MySQL 使用工具 Navicat Premium 16 代码能力快速提升小方法&#xff0c;看完代码自己敲一遍&#xff0c;十分有用 拖动表名到查询文件中就可以直接把名字拉进来以下是使用脚本方法&#xff0c;也可以直接进行修改中括号&#xff0c;就代表可写可不写 有些地方的代…

【Web】VS Code 插件

专栏文章索引&#xff1a;Web 有问题可私聊&#xff1a;QQ&#xff1a;3375119339 目录 一、安装步骤 二、插件 1.Chinese (Simplified) (简体中文) 2.open in browser 3.vscode-icons 4.Live Server 5.Live Server Preview 6.翻译(英汉词典) 一、安装步骤 点击 “扩…

竞技游戏新纪元:如何打造满足现代玩家需求的极致体验?

文章目录 一、现代玩家需求分析二、以玩家体验为核心的游戏设计三、个性化与定制化服务四、强化社交互动与社区建设五、持续更新与优化《游戏力&#xff1a;竞技游戏设计实战教程》亮点编辑推荐内容简介目录获取方式 随着科技的飞速发展和游戏产业的不断壮大&#xff0c;现代玩…

GitHub repository - Watch - Star - Fork - Follow

GitHub repository - Watch - Star - Fork - Follow References 眼睛图标旁边写着 Watch 字样。点击这个按钮就可以 Watch 该仓库&#xff0c;今后该仓库的更新信息会显示在用户的公开活动中。Star 旁边的数字表示给这个仓库添加 Star 的人数。这个数越高&#xff0c;代表该仓库…

【多线程】单例模式 | 饿汉模式 | 懒汉模式 | 指令重排序问题

文章目录 单例模式一、单例模式1.饿汉模式2.懒汉模式&#xff08;单线程&#xff09;3.懒汉模式&#xff08;多线程&#xff09;改进 4.指令重排序1.概念2.question:3.解决方法4总结&#xff1a; 单例模式 一、单例模式 单例&#xff0c;就是单个实例 在有些场景中&#xff0c…

MacOs 安装thrift-0.5.0

下载thrift-0.5.0.tar.gz https://archive.apache.org/dist/incubator/thrift/0.5.0-incubating/ 安装thrift 解压&#xff1a;tar -zvxf thrift-0.5.0.tar.gz 进入解压目录&#xff1a;cd thrift-0.5.0 编译命令&#xff1a;./configure --prefix/usr/local/ --with-boo…

深度学习知识点:卷积神经网络(CNN)

深度学习知识点&#xff1a;卷积神经网络&#xff08;CNN&#xff09; 前言卷积神经网络&#xff08;CNN&#xff09;卷积神经网络的结构Keras搭建CNN经典网络分类LeNetAlexNetAlexNet 对比LeNet 的优势&#xff1f; VGGVGG使用2个33卷积的优势在哪里&#xff1f;每层卷积是否只…

【行为型模式】观察者模式

一、观察者模式概述​ 软件系统其实有点类似观察者模式&#xff0c;目的&#xff1a;一个对象的状态或行为的变化将导致其他对象的状态或行为也发生改变&#xff0c;他们之间将产生联动。 观察者模式&#xff1a; 1.定义了对象之间一种一对多的依赖关系&#xff0c;让一个对象的…

说说你对集合的理解?常见的操作有哪些?

一、是什么 集合&#xff08;Set&#xff09;&#xff0c;指具有某种特定性质的事物的总体&#xff0c;里面的每一项内容称作元素 在数学中&#xff0c;我们经常会遇到集合的概念&#xff1a; 有限集合&#xff1a;例如一个班集所有的同学构成的集合无限集合&#xff1a;例如…

麒麟KOS删除鼠标右键新建菜单里不需要的选项

原文链接&#xff1a;麒麟KOS删除鼠标右键新建菜单里不需要的选项 Hello&#xff0c;大家好啊&#xff01;在日常使用麒麟KOS操作系统时&#xff0c;我们可能会发现鼠标右键新建菜单里包含了一些不常用或者不需要的选项。这不仅影响我们的使用效率&#xff0c;也让菜单显得杂乱…

【3DsMax+Pt】练习案例

目录 一、在3DsMax中展UV 二、在Substance 3D Painter中绘制贴图 一、在3DsMax中展UV 1. 首先创建如下模型 2. 选中如下三条边线作为接缝 重置剥 发现如下部分还没有展开 再选一条边作为接缝 再次拨开 拨开后的UV如下 二、在Substance 3D Painter中绘制贴图 1. 新建项目&am…

多乐空气处理设备有限公司现已加入2024第13届生物发酵展

参展企业介绍 为满足日益发展的中国大陆市场对环境的要求&#xff0c;更接近Zui终用户&#xff0c;多乐集团于2001年在上海松江设立了第一家生产基地。经过十数年来的高速发展&#xff0c;多乐以其精湛的加工工艺、yiliu的制造技术方面的优势&#xff0c;在对温度湿度有严格要…

DAY14|二叉树理论基础、递归遍历、迭代遍历、统一迭代

理论基础、递归遍历、迭代遍历、统一迭代 理论基础递归遍历迭代遍历前序中序后序 统一迭代 理论基础 今天的内容极其基础也极其重要&#xff0c;今天的不掌握好&#xff0c;之后一个半月都要坐大牢… 以前算法课上学的还行&#xff0c;可能还能记得一些&#xff08;希望&#…

ubuntu 使用conda 创建虚拟环境总是报HTTP错误,转换多个镜像源之后仍报错

最近在使用Ubuntu conda创建虚拟环境时&#xff0c;总是报Http错误&#xff0c;如下图所示&#xff1a; 开始&#xff0c;我以为是conda 镜像源的问题&#xff0c;但是尝试了好几个镜像源都不行&#xff0c;还是报各种各样的HTTP错误。后来查阅很多&#xff0c;总算解决了。解…

imx6ull官方源码linux内核移植

1.尝试官方源码 在正点原子给的资料里找到NXP官方原版linux源码&#xff0c;路径为&#xff1a; 1、例程源码->4、 NXP 官方 原版 Uboot和 Linux->linux-imx-rel_imx_4.1.15_2.1.0_ga.tar.bz2。复制并解压。 修改顶层Makefile 编译一下 make -j16 出现以下错误 修改 就…

【数据结构】树与二叉树、树与森林部分习题以及算法设计例题 2

目录 【数据结构】树与二叉树、树与森林部分习题以及算法设计例题一、交换二叉树每个结点的左右孩子Swap 函数&#xff08;先序遍历&#xff09;&#xff1a;Swap 函数&#xff08;中序遍历&#xff09; 不可行&#xff1a;Swap 函数&#xff08;后序遍历&#xff09;&#xff…

【开发篇】十三、JVM基础参数设置与垃圾回收器的选择

文章目录 1、-Xmx 和 –Xms2、-XX:MaxMetaspaceSize 和 –XX:MetaspaceSize3、-Xss4、不建议改的参数5、其他参数6、选择GC回收器的调试思路7、CMS的并发模式失败现象的解决8、调优案例 GC问题解决方式&#xff1a; 优化JVM基础参数&#xff0c;避免频繁Full GC减少对象的产生…

0基础如何入门编程?

0基础如何进入IT行业 &#xff1f; 前言 简介&#xff1a;对于没有任何相关背景知识的人来说&#xff0c;如何才能成功进入IT行业&#xff1f;是否有一些特定的方法或技巧可以帮助他们实现这一目标&#xff1f; 主要方法有如下几点建议提供给宝子们 目录 免费视频网课学习…

读书笔记之《如何精心设计提示词来精通ChatGPT》

《如何精心设计提示词来精通ChatGPT》这本书英文标题为&#xff1a;《The Art of Prompt Engineering with chatGPT》&#xff0c;于2023年出版。作者是Nathan Hunter 。 Nathan Hunter简介&#xff1a;ChatGPT培训的创始人。作为一名资深培训师和教学设计师&#xff0c;我在过…

Spring Cloud 集成 Redis 发布订阅

目录 前言步骤引入相关maven依赖添加相关配置 使用方法发布订阅发布一个消息 注意总结 前言 在当今的软件开发领域&#xff0c;分布式系统已经成为一种主流的架构模式&#xff0c;尤其是在处理大规模、高并发、高可用的业务场景时。然而&#xff0c;随着系统复杂性的增加&…