【数据分析】AHP层次分析法

博主总结:根据每个方案x各准则因素权重累加结果   对比来选择目标。数据主观性强

简介

AHP层次分析法是一种解决多目标复杂问题的定性和定量相结合进行计算决策权重的研究方法。该方法将定量分析与定性分析结合起来,用决策者的经验判断各衡量目标之间能否实现的标准之间的相对重要程度,并合理地给出每个决策方案的每个标准的权数,利用权数求出各方案的优劣次序,比较有效地应用于那些难以用定量方法解决的课题。

比如现在想选择一个最佳旅游景点,当前有三个选择标准(分别是景色,门票和交通),并且对应有三种选择方案。现通过旅游专家打分,希望结合三个选择标准,选出最佳方案(即最终决定去哪个景区旅游)。诸如此类问题即专家打分进行权重计算等,均可通过AHP层次分析法得到解决。

正如上述问题,专家可以对3个准则层标准(分别是景色,门票和交通)进行打分,得到3个选择标准对应的权重值;然后结合准则层得到的权重值,加上方案层的得分,最终选择出最佳方案。

  • 特别提示
  • 对于AHP层次分析法,即专家打分进行权重,专家打分需要遵循特殊的数据格式,即“判断矩阵”;
  • AHP层次分析法包括两个步骤,分别是权重计算和一致性检验(SPSSAU会默认输出);
  • SPSSAU需要手工输入判断矩阵数据即可完成分析,不需要上传。

分析结果表格示例如下:

AHP层次分析案例

1、背景

当前公司希望组织员工出去旅游,希望综合满足大家的要求,因此找到10位旅游专家,对旅游的4个影响因素(分别是景色,门票,交通和拥挤度)进行评价(即专家评价),最终得出四个影响因素的权重,然后结合权重值,对3个备选景点计算得分,选择出最佳旅游方案。

总共有4个评价因素(即准则层为4项,分别是景色,门票,交通和拥挤度),共有10位旅游专家进行打分,采用1-5分标度法,即比如A因素相对B因素非常重要,此时打5分,那么B因素相对于A因素就是1/5即0.2分。A因素相对B因素比较重要,此时打3分;A因素相对B因素重要程度一样,此时为1分。

共有10个旅游专家打分,最终将10个旅游的打分进行计算平均分,得到最终的判断矩阵表格,如下表:

上表格显示:门票相对于景色来讲,重要性更高,所以为3分;相反,景色相对于门票来讲,则为0.33333分。交通相对于景色来更重要为2分,以及拥挤度相对于景色来讲更重要为2分。其余类似下去。

2、理论

完整的AHP层次分析法通常包括四个步骤,分别是:

  • 第一步:标度确定和构造判断矩阵;
  • 此步骤即为原始数据(判断矩阵)的来源,比如本例中使用1-5分标度法(最低为1分,最高为5分);并且结合出专家打分最终得到判断矩阵表格。
  • 第二步:特征向量,特征根计算和权重计算;
  • 此步骤目的在于计算出权重值,如果需要计算权重,则需要首先计算特征向量值,因此SPSSAU会提供特征向量指标。 同时得到最大特征根值(CI),用于下一步的一致性检验使用。
  • 第三步:一致性检验分析;
  • 在构建判断矩阵时,有可能会出现逻辑性错误,比如A比B重要,B比C重要,但却又出现C比A重要。因此需要使用一致性检验是否出现问题,一致性检验使用CR值进行分析,CR值小于0.1则说明通过一致性检验,反之则说明没有通过一致性检验。
    针对CR的计算上,CR=CI/RI,CI值在求特征向量时已经得到,RI值则直接查表得出。
    如果数据没有通过一致性检验,此时需要检查是否存在逻辑问题等,重新录入判断矩阵进行分析。
  • 第四步:分析结论。
  • 如果已经计算出权重,并且判断矩阵满足一致性检验,最终则可以下结论继续进一步分析。

1.判断矩阵为4阶判断矩阵

上表格输出包括特征向量这个中间计算过程值,同时输出权重值。最大特征根用于计算CI值;而CI值用于下面的一致性检验使用。

公司组织旅游,希望综合满足大家的要求,因此让10位旅游专家,对旅游的4个影响因素(分别是景色,门票,交通和拥挤度)进行评价(即专家评价),采用1-5分标度法,即比如A因素相对B因素非常重要,此时打5分;A因素相对B因素比较重要,此时打3分;A因素相对B因素重要程度一样,此时为1分。最终构建出判断矩阵,使用SPSSAU 18.0软件进行AHP层次分析。

使用SPSSAU18.0软件进行分析,最终得出特征向量为(0.484,1.667,1.078,0.771),以及最大特征根值为4.071,CI值为0.024。最终总共4项(分别是景色,门票,交通和拥挤度)对应的权重值分别是:12.094%,41.680%,26.948%,19.278%。通过权重值大小可知,门票这个因素的权重最高为41.680%,其次为交通因素,权重为26.948%。

上表格为随机一致性RI表,本次研究判断矩阵为4阶,因此通过上表查看可以得出RI值为0.89。

本次研究构建出4阶判断矩阵,对应着上表可以查询得到随机一致性RI值为0.890,RI值用于下述一致性检验计算使用。

上表格展示一致性检验结果,CR=CI/RI,最终CR值为0.027,说明通过一致性检验。

通常情况下CR值越小,则说明判断矩阵一致性越好,一般情况下CR值小于0.1,则判断矩阵满足一致性检验;如果CR值大于0.1,则说明不具有一致性,应该对判断矩阵进行适当调整之后再次进行分析。

本次针对4阶判断矩阵计算得到CI值为0.024,针对RI值查表为0.890,因此计算得到CR值为0.027 < 0.1,意味着本次研究判断矩阵满足一致性检验,计算所得权重具有一致性,即说明计算权重具有科学性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/312812.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

第十五届蓝桥杯复盘python大学A组——试题B 召唤数学精灵

按照正常思路解决&#xff0c;由于累乘消耗大量时间&#xff0c;因此这不是一个明智的解决方案。 这段代码执行速度非常慢的原因在于它试图计算非常大的数的阶乘&#xff08;累乘&#xff09;&#xff0c;并且对于每一个i的值都执行这个计算。阶乘的增长是极其迅速的&#xff…

考研数学|「基础」和「强化」阶段分别怎么做?

从目前考研数学的趋势来看&#xff0c;更加注重数学基础的理解和计算量。也就是基础知识和计算&#xff0c;如何锻炼这两种能力就显得尤为重要。希望我的复习经验可以给到读者一些启发。 数学规划 从备考过程来看&#xff0c;数学的复习可以分为三个阶段&#xff1a;1、基础阶…

.net框架和c#程序设计第三次测试

目录 一、测试要求 二、实现效果 三、实现代码 一、测试要求 二、实现效果 数据库中的内容&#xff1a; 使用数据库中的账号登录&#xff1a; 若不是数据库中的内容&#xff1a; 三、实现代码 login.aspx文件&#xff1a; <% Page Language"C#" AutoEventW…

Pytest测试用例中的mark用法(包含代码示例与使用场景详解)

在软件开发中&#xff0c;测试是确保代码质量和功能稳定性的重要环节。Python作为一门流行的编程语言&#xff0c;拥有丰富的测试工具和框架&#xff0c;其中pytest是其中之一。pytest提供了丰富的功能来简化测试用例的编写&#xff0c;其中的mark功能允许我们对测试用例进行标…

程序设计|C语言教学——C语言基础1:C语言的引入和入门

一、程序的执行 1.定义 解释&#xff1a;借助一个程序&#xff0c;那个程序能够试图理解你的程序&#xff0c;然后按照你的要求执行。下次执行的时候还需要从零开始解释。 编译&#xff1a;借助一个程序&#xff0c;能够像翻译官一样&#xff0c;把你的程序翻译成机器语言&a…

【编程TOOL】VC++6.0下载安装配置使用保姆式教程

目录 ​编辑 1.软件介绍 2.软件下载 3.软件安装 3.1.下载得到可执行文件并双击进行安装 3.2. 点击下一步 3.3. 选择安装位置 3.4. 勾选“创建桌面快捷方式”并点击下一步 5. 点击安装并等待 3.6. 先取消运行&#xff0c;后点击完成&#xff0c;软件即安装完毕 4.兼容性配置 4.1…

网络靶场实战-反射DLL注入

在之前的文章中&#xff0c;通过模拟 Windows 映像加载程序的功能&#xff0c;完全从内存中加载 DLL 模块&#xff0c;而无需将 DLL 存储到磁盘上&#xff0c;但这只能从本地进程中加载进内存中&#xff0c;如果想要在目标进程中通过内存加载 DLL 模块&#xff0c;可以通过一些…

求π的近似值(C语言)

一、N-S流程图&#xff1b; 二、运行结果&#xff1b; 三、源代码&#xff1b; # define _CRT_SECURE_NO_WARNINGS # include <stdio.h> # include <math.h>int main() {//初始化变量值&#xff1b;int symbol 1;double denominator 1.0, sum 0, term 1.0;//循…

服务器docker应用一览

文章目录 一、需求概况二、业务流程三、运行效果四、实现过程1. 基础前提2. 源码放送3.核心代码4. 项目打包5.部署步骤 一、需求概况 现有某云主机服务器&#xff0c;用来做项目演示用&#xff0c;上面运行了docker应用&#xff0c;现希望有一总览页面&#xff0c;用来展示部署…

【Spring进阶系列丨第九篇】基于XML的面向切面编程(AOP)详解

文章目录 一、基于XML的AOP1.1、打印日志案例1.1.1、beans.xml中添加aop的约束1.1.2、定义Bean 1.2、定义记录日志的类【切面】1.3、导入AOP的依赖1.4、主配置文件中配置AOP1.5、测试1.6、切入点表达式1.6.1、访问修饰符可以省略1.6.2、返回值可以使用通配符&#xff0c;表示任…

软考131-上午题-【软件工程】-软件可靠性、可用性、可维护性

可靠性、可用性和可维护性是软件的质量属性&#xff0c;软件工程中&#xff0c;用 0-1 之间的数来度量。 0.66 66% 1、 可靠性 可靠性是指一个系统对于给定的时间间隔内、在给定条件下无失效运作的概率。 可以用 MTTF/ (1MTTF) 来度量&#xff0c;其中 MTTF 为平均无故障时间…

【InternLM 实战营第二期-笔记1】书生浦语大模型开源体系详细介绍InternLM2技术报告解读(附相关论文)

书生浦语是上海人工智能实验室和商汤科技联合研发的一款大模型,很高兴能参与本次第二期训练营&#xff0c;我也将会通过笔记博客的方式记录学习的过程与遇到的问题&#xff0c;并为代码添加注释&#xff0c;希望可以帮助到你们。 记得点赞哟(๑ゝω╹๑) 书生浦语大模型开源体系…

重定向原理和缓冲区

文章目录 重定向缓冲区 正文开始前给大家推荐个网站&#xff0c;前些天发现了一个巨牛的 人工智能学习网站&#xff0c; 通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。 点击跳转到网站。 重定向 内核中为了管理被打开的文件&#xff0c;一定会存在描述一…

4核8G配置服务器多少钱?2024年阿里云服务器700元1年价格便宜

4核8G配置服务器多少钱&#xff1f;2024年阿里云服务器700元1年价格便宜。阿里云4核8G服务器租用优惠价格700元1年&#xff0c;配置为ECS通用算力型u1实例&#xff08;ecs.u1-c1m2.xlarge&#xff09;4核8G配置、1M到3M带宽可选、ESSD Entry系统盘20G到40G可选&#xff0c;CPU采…

低噪声放大器是如何实现低噪声放大的功能的

灵敏度作为接收机最重要的指标之一,直接决定了接收机能分辨的最小信号。接收机的灵敏度计算公式如下所示。 Psensitivity=-174dBm+NF+10*lg(BW)+SNR 由接收机灵敏度的计算公式可知,影响接收机灵敏度的指标有噪声系数、带宽和信噪比,因此一旦带宽和信噪比确定了,那么能决…

C++ queue priority_queuestack 详解及模拟实现

1. stack的介绍和使用 1.1 stack的介绍 1. stack是一种容器适配器&#xff0c;专门用在具有后进先出操作的上下文环境中&#xff0c;其删除只能从容器的一端进行元素的插入与提取操作。 2. stack是作为容器适配器被实现的&#xff0c;容器适配器即是对特定类封装作为其底层的容…

蓝桥杯(基础题)

试题 C: 好数 时间限制 : 1.0s 内存限制: 256.0MB 本题总分&#xff1a;10 分 【问题描述】 一个整数如果按从低位到高位的顺序&#xff0c;奇数位&#xff08;个位、百位、万位 &#xff09;上 的数字是奇数&#xff0c;偶数位&#xff08;十位、千位、十万位 &…

手机副业赚钱秘籍:让你的手机变成赚钱利器

当今社会&#xff0c;智能手机已然成为我们生活不可或缺的一部分。随着技术的飞速进步&#xff0c;手机不再仅仅是通讯工具&#xff0c;而是化身为生活伴侣与工作助手。在这个信息爆炸的时代&#xff0c;我们时常会被一种焦虑感所困扰&#xff1a;如何能让手机超越消磨时光的定…

移动端微信内置浏览器播放video不兼容无法自动播放的问题

移动端微信内置浏览器播放video不兼容无法自动播放的问题 先上公告 IOS中的解决方法 // 解决 ios 微信 video 自动播放document.addEventListener(WeixinJSBridgeReady,function() {const video document.querySelector(video);video && video.play();},false,);Vue中…

OpenStack云平台实战

1、环境准备 主机CPU数量内存硬盘IPV4发行版controller48GB100GBens33: 192.168.110.27/24 esn34: 192.168.237.131/24CentOS 7.9compute48GB200GB、100GBens33: 192.168.110.26/24 esn34: 192.168.237.132/24CentOS 7.9 1.1 虚拟机安装部署 1.1.1 创建虚拟机 这里16或者17都…