K-近邻算法的 sklearn 实现

  1. 实验目的与要求
    1. 掌握基于 K-近邻分类算法的编程方法
    2. 通过编程理解 K-近邻分类算法和该算法的基本步骤

  2. 实验器材
    1. 硬件:PC 机(参与实验的学生每人一台)
    2. 软件环境:Python3.7 + Pycharm

  3. 实验内容
    1. 使用 sklearn 库中的 neighbors 模块实现 K-近邻算法,并对二手房样本所
      属类别进行预测,程序流程为:
      (1) 导入 sklearn 库中的 K-近邻算法模块(KNeighborsClassifier),数据集分割模块(train_test_split)以及机器学习准确率评估模块(metrics)
      (2) 读取数据,并分割成特征属性集和类别集
      (3) 将数据集分割成训练集和测试集
      (4) 构建模型
      (5) 利用循环语句,k 值取 1-8 分别训练模型以确定最优 k 值
      (6) 使用最优 k 值训练模型并对新样本[7,27]和[2,4]的类别进行预测
      (7) 使用测试集对模型进行测试
      (8) 预测新样本类别
      (9) 绘制分类边界图

  4. 数据集下载
    本实验的数据集可以点击此处去下载

  5. 代码实现
# coding = utf-8
# 导入必要的库
import numpy as np
import matplotlib.pyplot as plt
from sklearn.neighbors import KNeighborsClassifier
from sklearn import metrics  #引入机器学习的准确率评估模
from sklearn.model_selection import train_test_split  #数据分割模块
from sklearn.model_selection import cross_val_score  #交叉验证模块
# 导入数据
X1,y1=[],[]
fr = open('./knn.txt')
for line in fr.readlines():lineArr = line.strip().split()X1.append([int(lineArr[0]),int(lineArr[1])])y1.append(int(lineArr[2]))
X=np.array(X1)  #转换成 NumPy 数组,X 是特征属性集
y=np.array(y1)  #y 是类别标签集
X_train,X_test,Y_train,Y_test=train_test_split(X,y,test_size=0.16)
# 测试准确率
k_range = range(1, 9)
k_error = []  #保存预测错误率
for k in k_range:  #循环,k 取值为 1~8,查看 KNN 分类的预测准确率knn = KNeighborsClassifier(n_neighbors=k)scores = cross_val_score(knn, X, y, cv=3, scoring='accuracy')#cv 参数决定数据集划分比例,这里是按照 5:1 划分训练集和测试集k_error.append(1 - scores.mean())  #把每次的错误率添加到数组中
k_error.pop(0)
k_min = min(k_error)
k = k_error.index(k_min)
# 定义模型并训练
knn=KNeighborsClassifier(k + 2)
knn.fit(X,y)
KNeighborsClassifier(n_neighbors=3)
# 使用测试集对分类模型进行测试
y_pred=knn.predict(X_test)
print(knn.score(X_test,Y_test))  #输出整体预测结果的准确率
#输出准确率的方法 2
print(metrics.accuracy_score(y_true=Y_test,y_pred=y_pred))
#输出混淆矩阵,如果为对角矩阵,则表示预测结果是正确的,准确度越大
print(metrics.confusion_matrix(y_true=Y_test,y_pred=y_pred)) 
#输出更详细的分类测试报告
from sklearn.metrics import classification_report
target_names = ['labels_1','labels_2','labels_3']
print(classification_report(Y_test,y_pred))
1.0
1.0
[[2]]precision    recall  f1-score   support2       1.00      1.00      1.00         2accuracy                           1.00         2macro avg       1.00      1.00      1.00         2
weighted avg       1.00      1.00      1.00         2
# 预测新样本的类别
label=knn.predict([[7,27],[2,4]])
print(label)  #输出[2 1],表示新样本分别属于 2 和 1 类
[2 1]
# 绘制分类程序的界面图
import matplotlib as mpl
N, M = 90, 90  #网格采样点的个数,采样点越多,分类界面图越精细
t1 = np.linspace(0, 25, N)  #生成采样点的横坐标值
t2 = np.linspace(0,12, M)  #生成采样点的纵坐标值
x1, x2 = np.meshgrid(t1, t2)  #生成网格采样点 
x_show = np.stack((x1.flat, x2.flat), axis=1)  #将采样点作为测试点
y_show_hat = knn.predict(x_show)  #预测采样点的值
y_show_hat = y_show_hat.reshape(x1.shape)  #使之与输入的形状相同 
cm_light = mpl.colors.ListedColormap(['#A0FFA0', '#FFA0A0', '#A0A0FF'])
plt.pcolormesh(x1, x2, y_show_hat, cmap=cm_light,alpha=0.3)  #预测值的显示
<matplotlib.collections.QuadMesh at 0x3e6b6e10>

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/317319.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于python的舞蹈经验分享交流网站django+vue

1.运行环境&#xff1a;python3.7/python3.8。 2.IDE环境&#xff1a;pycharmmysql5.7/8.0; 3.数据库工具&#xff1a;Navicat11 4.硬件环境&#xff1a;windows11/10 8G内存以上 5.数据库&#xff1a;MySql 5.7/8.0版本&#xff1b; 运行成功后&#xff0c;在浏览器中输入&am…

计算机网络——应用层协议(1)

在这篇文章初识网络中&#xff0c;我介绍了关于计算机网络的相关知识&#xff0c;以及在这两篇文章中Socket编程和Socket编程——tcp&#xff0c;介绍了使用套接字在两种协议下的网络间通信方式。本篇文章中我将会进一步介绍网络中网络协议的部分&#xff0c;而这将会从应用层开…

Vue 组件单元测试深度探索:细致解析与实战范例大全

Vue.js作为一款广受欢迎的前端框架&#xff0c;以其声明式的数据绑定、组件化开发和灵活的生态系统赢得了广大开发者的心。然而&#xff0c;随着项目规模的增长&#xff0c;确保组件的稳定性和可靠性变得愈发关键。单元测试作为软件质量的守护神&#xff0c;为Vue组件的开发过程…

FPGA高端项目:FPGA帧差算法多目标图像识别+目标跟踪,提供11套工程源码和技术支持

目录 1、前言免责声明 2、相关方案推荐FPGA帧差算法单个目标图像识别目标跟踪 3、详细设计方案设计原理框图运动目标检测原理OV5640摄像头配置与采集OV7725摄像头配置与采集RGB视频流转AXI4-StreamVDMA图像缓存多目标帧差算法图像识别目标跟踪模块视频输出Xilinx系列FPGA工程源…

PDF高效编辑器,支持修改PDF文档并转换格式从PDF文件转换成图片文件,轻松管理你的文档世界!

PDF文件已成为我们工作、学习和生活中不可或缺的一部分。然而&#xff0c;传统的PDF阅读器往往只能满足简单的查看需求&#xff0c;对于需要频繁编辑、修改或转换格式的用户来说&#xff0c;就显得力不从心。现在&#xff0c;我们为您带来一款全新的PDF高效编辑器&#xff0c;让…

绿色便携方式安装apache+mysql+tomcat+php集成环境并提供控制面板

绿色便携方式安装带控制面板的ApacheMariaDBTomcatPHP集成环境 目录 绿色便携方式安装带控制面板的ApacheMariaDBTomcatPHP集成环境[TOC](目录) 前言一、XAMPP二、安装和使用1.安装2.使用 三、可能的错误1、检查端口占用2、修改端口3、JDK原因导致 前言 安装集成环境往往配置复…

paddlehub的简单应用

1、下载安装 pip install paddlehub -i https://pypi.tuna.tsinghua.edu.cn/simple 报错&#xff1a; Collecting onnx<1.9.0 (from paddle2onnx>0.5.1->paddlehub)Using cached https://pypi.tuna.tsinghua.edu.cn/packages/73/e9/5b953497c0e36df589fc60cc6c6b35…

[1688]jsp工资投放管理系统Myeclipse开发mysql数据库web结构java编程计算机网页项目

一、源码特点 JSP 工资投放管理系统是一套完善的java web信息管理系统&#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。开发环境为 TOMCAT7.0,Myeclipse8.5开发&#xff0c;数据库为Mysql5.0…

TDengine写入2000万数据查询体验

最近在寻找时序数据库&#xff0c;想应用在公司的项目上。 上一篇文章实验了InfluxDB:windows上使用influx2.7学习,还学习了flux语言&#xff0c;最后发现宽表查询比较困难&#xff0c;就放弃了&#xff0c;于是决定试试国产时序数据库TDengine 参考 官方文档&#xff1a;htt…

Vitis HLS 学习笔记--IDE软件高效操作指引

目录 1. 简介 2. 实用软件操作 2.1 C/RTL Cosimulation 选项 2.2 Do not show this dialog again 2.3 New Solution 2.4 对比 Solution 2.5 以命令行方式运行&#xff08;windows&#xff09; 2.6 文本缩放快捷键 2.7 查看和修改快捷键 2.8 将Vitis HLS RTL 导入 Viv…

Postgresql源码(127)投影ExecProject的表达式执行分析

无论是投影还是别的计算&#xff0c;表达式执行的入口和计算逻辑都是统一的&#xff0c;这里已投影为分析表达式执行的流程。 1 投影函数 用例 create table t1(i int primary key, j int, k int); insert into t1 select i, i % 10, i % 100 from generate_series(1,1000000…

前端性能优化知识梳理

1.重要性 当我们面试的时候&#xff0c;前端性能优化方面算是必考的知识点&#xff0c;但是工作中我们又很少会重点的对项目进行前端优化&#xff0c;它真的不重要吗&#xff1f; 如果我们可以将后端响应时间缩短一半&#xff0c;整体响应时间只能减少5%~10%。而如果关注前端…

【C语言】——数据在内存中的存储

【C语言】——数据在内存中的存储 一、整数在内存中的存储1.1、整数的存储方式1.2、大小端字节序&#xff08;1&#xff09;大小端字节序的定义&#xff08;2&#xff09;判断大小端 1.3、整型练习 二、浮点数在内存中的存储2.1、引言2.2、浮点数的存储规则2.3、浮点数的存储过…

mac用Homebrew安装MySQL并配置远程登录

1. 简介 MySQL 是一个开源的关系型数据库管理系统&#xff08;RDBMS&#xff09;&#xff0c;由瑞典 MySQL AB 公司开发&#xff0c;后被 Oracle 公司收购。MySQL 使用 SQL&#xff08;Structured Query Language&#xff09;作为查询语言&#xff0c;并提供了强大的功能和性能…

python安卓自动化pyaibote实践------学习通自动刷课

前言 欢迎来到我的博客 个人主页:北岭敲键盘的荒漠猫-CSDN博客 本文是一个完成一个自动播放课程&#xff0c;避免人为频繁点击脚本的构思与源码。 加油&#xff01;为实现全部电脑自动化办公而奋斗&#xff01; 为实现摆烂躺平的人生而奋斗&#xff01;&#xff01;&#xff…

Linux——socket套接字与udp通信

目录 一、理解IP地址与端口 二、socket套接字 三、TCP与UDP的关系 四、网络字节序 五、socket编程 1.socket()创建套接字 2.填充sockaddr_in 结构体 3.bind() 绑定信息 4.recvfrom()接收消息 5.sendto()发送消息 六、UdpServer代码 一、理解IP地址与端口 IP地址是In…

【C++】详解string类

目录 简介 框架 构造 全缺省构造函数 ​编辑 传对象构造函数 拷贝构造 析构函数 容量 size() capacity&#xff08;&#xff09; empty() clear() reserve() ​编辑 resize() 遍历 检引用符号"[ ]"的重载 迭代器 begin() end() rbegin() rend(…

【触摸案例-控件不能响应的情况 Objective-C语言】

一、接下来,我们来说这个“控件不能响应的情况”, 1.素材里边,有一个“不接受用户交互的情况”,这么一个代码,把它打开, 把这个项目啊,复制过来,改一个名字,叫做“04-控件不能响应的情况”, 打开之后,command + R,运行一下, 在storyboard上,你也可以看得出来,我…

智慧农业设备——虫情监测系统

随着科技的不断进步和农业生产的日益现代化&#xff0c;智慧农业成为了新时代农业发展的重要方向。其中&#xff0c;虫情监测系统作为智慧农业的重要组成部分&#xff0c;正逐渐受到广大农户和农业专家的关注。 虫情监测系统是一种基于现代传感技术、图像识别技术和大数据分析技…

链表-----返回倒数第K个节点回文结构的判断相交链表

目录 1.返回倒数第K个节点 2.回文结构的判断 3.相交链表的判断&#xff0c;返回交点 1.返回倒数第K个节点 &#xff08;1&#xff09;返回链表的第k个节点&#xff0c;我们这里的做法是定义两个指针&#xff0c;这两个指针之间相差的是k这个长度&#xff1b;这个过程的实现就…