回归预测 | Matlab实现基于CNN-SE-Attention-ITCN多特征输入回归组合预测算法

回归预测 | Matlab实现基于CNN-SE-Attention-ITCN多特征输入回归组合预测算法

目录

    • 回归预测 | Matlab实现基于CNN-SE-Attention-ITCN多特征输入回归组合预测算法
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述

基本介绍

【模型简介】CNN-SE_Attention结合了卷积神经网络(CNN)和注意力机制。在传统的CNN中,特征表示是静态的,无法适应不同任务和场景的需求。而引入SE-Attention机制后,网络能够动态地调整特征图的重要性,以更好地捕获关键特征。
已有研究表明,传统时间卷积网络难以提取输入数据的内部相关信息,扩展卷积会导致局部特征丢失,因此提出改进时间卷积网络(ITCN),模型参考以下论文。
该组合模型首先通过CNN-SE_Attention挖掘输入矩阵各影响因素与输出间的深层隐含信息,然后利用改进的TCN提取时序特征,构建长依赖关系,生成各影响因素与输出的非线性关系,对光伏功率进行回归预测。
【适用领域】光伏预测、风电预测、房价预测、股票预测等多种应用场景。
【方便使用】文件提供了详细的注释以及评价指标,直接替换数据集即可使用,无需大幅修改程序,注释清晰,易于你的理解与修改。一键运行,一键出图。
【示例】采用光伏场数据作为输入数据,包括组件温度、温度、气压、湿度等天气特征,预测光伏发电功率,具有很强的实际应用意义。输入数值天气特征,预测光伏发电功率,实现多特征输入,单特征输出。
【模型评价】有多种评价指标任你选择,为体现真实性,我用未清洗的数据进行测试,模型预测效果极佳,通过修改参数,特征工程可进一步增加预测精度。
注释清晰,适合初学者学习使用。

在这里插入图片描述

程序设计

  • 完整源码和数据获取方式私信博主回复Matlab实现基于CNN-SE-Attention-ITCN多特征输入回归组合预测算法。
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%%  均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);%%  适应度曲线%%
%决定系数
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test -  T_sim2)^2 / norm(T_test -  mean(T_test ))^2;%%
%均方误差 MSE
mse1 = sum((T_sim1 - T_train).^2)./M;
mse2 = sum((T_sim2 - T_test).^2)./N;% CSDN 机器学习之心

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/321295.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

武汉星起航:精准布局,卓越服务——运营交付团队领跑亚马逊

在全球电商浪潮中,亚马逊平台以其独特的商业模式和全球化的市场布局,吸引了无数商家和创业者的目光。在这个充满机遇的市场中,武汉星起航电子商务有限公司凭借其专业的运营交付团队,以其独特的五对一服务体系和精准的战略布局&…

Azure AKS日志查询KQL表达式

背景需求 Azure(Global) AKS集群中,需要查询部署服务的历史日志,例如:我部署了服务A,但服务A的上一个版本Pod已经被杀掉由于版本的更新迭代,而我在命令行中只能看到当前版本的pod日志&#xff…

Git推送本地项目到gitee远程仓库

Git 是一个功能强大的分布式版本控制系统,它允许多人协作开发项目,同时有效管理代码的历史版本。开发者可以克隆一个公共仓库到本地,进行更改后将更新推送回服务器,或从服务器拉取他人更改,实现代码的同步和版本控制。…

普洱茶泡多少茶叶才算淡茶?

普洱茶淡茶一般放几克茶叶,品深茶官网根据多年专业研究与实践结果,制定了淡茶冲泡标准。在冲泡普洱茶淡茶时,茶叶的投放量是关键因素之一。淡茶冲泡标准旨在保持茶汤的清爽口感,同时充分展现普洱茶的独特风味。 根据《品深淡茶冲…

题目:吃奶酪

问题描述: 解题思路: 枚举每种吃奶酪顺序,并计算其距离,选择最小的距离即答案。v数组:记录顺序。 注意点:1. 每次用于min的s需要重置为0。 2. 实数包括小数,所以结构体内x,y为double类型。 3. 第…

C++变量的作用域与存储类型

一 变量的作用域和存储类型 1 变量的作用域(Scope) 指在源程序中定义变量的位置及其能被读写访问的范围分为局部变量(Local Variable)和全局变量(Global Variable) 1)局部变量(Local Variable) 在语句块内定义的变量 形参也是局部变量 特点: 生存期是…

Windows系统和unbtun系统连接usb 3.0海康可见MVS和红外艾睿相机

一.海康可见USB3.0工业面阵相机 海康usb相机需要去海康官网上下载对应系统的MVS客户端及SDK开发包 海康机器人-机器视觉-下载中心 选择Windows系统和unbtun(我是linux aarch64,所以选择了对应压缩包解压) Windows系统 1.双击安装包进入安装界面&…

代码随想录第52天|300.最长递增子序列 718. 最长重复子数组

300.最长递增子序列 300. 最长递增子序列 - 力扣(LeetCode) 代码随想录 (programmercarl.com) 动态规划之子序列问题,元素不连续!| LeetCode:300.最长递增子序列_哔哩哔哩_bilibili 给你一个整数数组 nums &#xff0…

数据结构(c):队列

目录 🍺0.前言 1.什么是队列 2. 队列的实现 2.1定义队列节点 2.2定义队列 2.3队尾入队列 2.4判断队列是否为空 2.5队头出队列 2.6 队列首元素 2.7队尾元素 2.8队列内的元素个数 2.9销毁队列 3.试运行 💎4.结束语 🍺0.前言 言C之…

计算图:深度学习中的链式求导与反向传播引擎

在深度学习的世界中,计算图扮演着至关重要的角色。它不仅是数学计算的图形化表示,更是链式求导与反向传播算法的核心。本文将深入探讨计算图的基本概念、与链式求导的紧密关系及其在反向传播中的应用,旨在为读者提供一个全面而深入的理解。 计…

学习软考----数据库系统工程师24

关系数据库设计基础知识 函数依赖 码 多值依赖 性质

QT creator qt6.0 使用msvc2019 64bit编译报错

qt creator qt6.0报错: D:\Qt6\6.3.0\msvc2019_64\include\QtCore\qglobal.h:123: error: C1189: #error: "Qt requires a C17 compiler, and a suitable value for __cplusplus. On MSVC, you must pass the /Zc:__cplusplus option to the compiler."…

【大模型学习】私有大模型部署(基础知识)

私有大模型 优点 保护内部隐私 缺点 成本昂贵 难以共享 难以更新 大模型底座 基础知识点 知识库 知识库是什么? 知识库的作用是什么? 微调 增强大模型的推理能力 AI Agent 代理,与内部大模型进行交互 开源 and 闭源 是否可以查…

PTQ4SAM、Mamba-Attention、AniTalker、IceFormer、U-DiTs、CogDPM

本文首发于公众号:机器感知 PTQ4SAM、Mamba-Attention、AniTalker、IceFormer、U-DiTs、CogDPM PTQ4SAM: Post-Training Quantization for Segment Anything Segment Anything Model (SAM) has achieved impressive performance in many computer vision tasks. Ho…

Linux\_c输出

第一条Linux_c输出 初界面 : ls # 显示目录下的文件cd # 进入到某个目录 # 比如 我进入了Codels # 发现没有显示, 说明为文件下为空vim cpucdoe.c # 创建一个 .c的源码文件进入到了vim的编辑界面: i # 按i 就可以进行编辑 , 下面显示插入标识在编辑模式下, 可以通…

【Linux】文件内容相关的命令,补充:管道符

1、查看文件内容 (1-1)查看文件内容:cat,tac,head,tail 查看文件内容cat 文件名查看文件内容并显示行号cat -n 文件名倒着查看文件内容(从最后一行开始)tac 文件名查看文件前10行…

KDTree空间搜索算法学习

目录 KDTree(K-Dimensional Tree)原理步骤空间索引建立例子[^1]回溯搜索例子[^2] 相关包案例[^3]数据KDTree 识别轨道衔接出行轨道衔接单车骑行范围分析结果保存 KDTree(K-Dimensional Tree)原理 将需要匹配的 K 维空间点建立 K …

Git中单独的功能特性分支是什么含义

在Git中,一个"功能特性分支"(通常简称为“特性分支”)是指从主开发分支(比如main或master)独立出来的分支,专门用于开发一个新功能、修复一个bug,或者进行实验性的尝试。使用特性分支…

开源的聊天服务器tigase 7.1.3 相关文档

官方的api文档 7.1.3: Tigase Administration Guide github地址: Release 7.1.3 tigase/tigase-server GitHub 安装教程: Tigase手动安装过程-腾讯云开发者社区-腾讯云

Pascal Content数据集

如果您想使用Pascal Context数据集,请安装Detail,然后运行以下命令将注释转换为正确的格式。 1.安装Detail 进入项目终端 #即 这是在我自己的项目下直接进行克隆操作: git clone https://github.com/zhanghang1989/detail-api.git $PASCAL…