私域流量优化:如何利用 AIPL 模型洞察客户生命周期价值

在当今这个数字化时代,商业战场的硝烟从未如此浓烈。随着互联网红利的逐渐消退,公域流量的成本水涨船高,企业间对于有限用户资源的争夺已进入白热化阶段。每一次点击、每一个曝光背后,都是企业不得不承担的高昂代价。在此背景下,传统的依赖公域流量获取新客的模式正遭受前所未有的挑战,迫使企业不得不重新审视其营销策略,探索更为经济高效、可持续发展的顾客关系构建之道。

因此,将公域流量有效转化为私域流量,构建属于自己的用户池,成为了众多企业突破重围、在激烈竞争中寻求新增长点的必然选择。这不仅是对市场环境变化的主动适应,更是企业深化用户理解、提升顾客终身价值、强化品牌忠诚度的核心策略。

在之前的文章中我们针对 APMDR 模型做过专门的模型介绍,但这个模型并未聚焦在私域流量的运营上。本文我们将深入探讨一个在私域流量场景下使用频率更高的生命周期模型——AIPL 模型,通过采用这种用户生命周期管理模型,企业可以更高效地将公域流量转化为私域流量,从而提升市场竞争力。

什么是 AIPL 模型?

AIPL 模型是数字营销领域常用的一种用户生命周期管理模型,全称为 Awareness(认知)、Interest(兴趣)、Purchase(购买)、Loyalty(忠诚)。这个模型用于帮助企业深入分析并有效管理用户从初次接触品牌,经历认知、兴趣、购买到最终成为忠实粉丝的整个生命周期。

file

● Awareness(认知)

这是用户旅程的第一步,目标是让潜在客户首次认识并注意到品牌。在这个阶段,企业通过广告、社交媒体、内容营销等手段提高品牌知名度,让用户知道品牌的存在及其所能提供的价值。

● Interest(兴趣)

当用户对品牌产生了初步的认知后,下一步是激发他们的兴趣。通过提供有价值的内容、产品信息、试用体验或互动活动,使用户深入了解品牌和产品,促使他们从旁观者转变为积极参与者。

● Purchase(购买)

在兴趣阶段的基础上,企业通过促销、优惠券、个性化推荐等策略,鼓励用户完成首次购买。这一阶段是用户价值实现的关键步骤,标志着从潜在客户转变为实际消费者的转变。

● Loyalty(忠诚)

购买后的用户管理尤为重要,目标是通过优质的客户服务、售后支持、会员计划、个性化体验等,增强用户的满意度和忠诚度,促使他们重复购买,并可能成为品牌的倡导者,通过口碑推荐带动新用户的增长。

在客户数据洞察平台中落地 AIPL 模型

了解了 AIPL 模型的阶段划分以及不同阶段的用户定位后,我们接下来以用户在某电商品牌小程序购物为例,介绍一下 AIPL 模型在业务上的应用及其在袋鼠云客户数据洞察平台中的落地。

业务场景准备

小程序品牌购物场景下,用户生命周期各阶段代表行为可以总结为如下几点:

file

基于上述场景需要为用户建立如下标签体系并生成模型:

file

每一个用户在当前阶段仅会存在一个生命周期阶段,同时命中多个条件时认为用户在后置的生命周期阶段中。即:若用户同时满足 A、I、P 的条件,则用户当前处于生命周期 P 阶段。

在客户数据洞察平台配置 AIPL 模型

确定好了业务定义后,即可将定义中所需标签在「客户数据洞察平台」中配置并发布。标签配置逻辑之前的文章有讲到过,此处不再赘述,感兴趣的朋友可以翻看之前的文章进行了解:理论+实操|一文掌握 RFM 模型在客户数据洞察平台内的落地实战

准备好了基础数据后,即可前往「客户模型」模块进行 AIPL 模型配置与应用。

● 第一步:创建 AIPL 模型

平台内置了一种客户价值模型和三种生命周期模型,根据我们当前需要,选择生命周期模型中的 AIPL 模型。

file

● 第二步:基于之前定义的阶段条件进行模型规则配置

· 认知阶段规则定义

file

· 兴趣阶段规则定义

file

· 购买阶段规则定义

file

· 忠诚阶段规则定义

file

配置完成后,可通过「预估人数」功能预计算各阶段人群覆盖情况。

file

● 第三步:更新模型数据,便于后续做模型分析

创建模型并生成模型数据后,即可定期追踪用户各阶段分布情况。

file

此外,可以指定特定的两天,查看这段时间用户阶段变化情况。

file

例如,从下图中的数据流转可看出,4月24日有3个客户从认知阶段流入兴趣阶段;4个客户从兴趣阶段流入购买阶段;分别有1个认知阶段、1个购买阶段的用户流入忠诚阶段,且流入客户量新增了133%。

file

基于该数据可以进一步分析这批用户流入的特殊性,以此挖掘营销策略,提升其他客户的流转意愿与速度。从图中可以看出目前尚无用户流失情况出现,是一个好的表现。

总结

对于企业和营销人员来说,使用 AIPL 模型对用户做阶段划分,可以帮助企业和营销人员全面理解用户从最初接触到成为忠诚客户的整个过程,使营销策略的制定更为科学和系统化。

而将用户阶段划分与数据追踪落地到「客户数据洞察平台」,则为企业提供了数据支持下的决策依据,帮助优化营销活动,减少盲目性,提升决策的科学性和准确性。同时,基于数据的实时追踪,使品牌人群资产得以量化,便于追踪营销活动的效果,评估用户在不同阶段的转化率,及时调整策略,优化整体营销绩效。

通过「客户数据洞察平台」及时追踪用户生命周期及其价值,可以进一步实现在每个阶段的精细化运营,延长用户的生命周期,增加用户的价值贡献,提高用户复购率和口碑传播,最终实现用户终身价值(CLV)的最大化。

《行业指标体系白皮书》下载地址:https://www.dtstack.com/resources/1057?src=szsm

《数栈产品白皮书》下载地址:https://www.dtstack.com/resources/1004?src=szsm

《数据治理行业实践白皮书》下载地址:https://www.dtstack.com/resources/1001?src=szsm

想了解或咨询更多有关大数据产品、行业解决方案、客户案例的朋友,浏览袋鼠云官网:https://www.dtstack.com/?src=szcsdn

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/323501.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JavaScript 进阶征途:解锁Function奥秘,深掘Object方法精髓

个人主页:学习前端的小z 个人专栏:JavaScript 精粹 本专栏旨在分享记录每日学习的前端知识和学习笔记的归纳总结,欢迎大家在评论区交流讨论! 文章目录 🈵Function方法 与 函数式编程💝1 call &#x1f49d…

【MySQL数据库】丨一文详解 JdbcTemplate(Spring中的CRUD)

前言 JdbcTemplate 是 Spring框架 中提供的一个对象,用于简化JDBC操作。它使得数据库操作变得更为简单和方便,大大提高了开发效率。 文章目录 前言为何要使用JdbcTemplate在JdbcTemplate中执行SQL语句的方法大致分为3类:案例代码 JdbcTemplat…

whisper之初步使用记录

文章目录 前言 一、whisper是什么? 二、使用步骤 1.安装 2.python调用 3.识别效果评估 4.一点封装 5.参考链接 总结 前言 随着AI大模型的不断发展,语音识别等周边内容也再次引发关注,通过语音转文字再与大模型交互,从而…

驾驶证OCR识别接口如何对接

驾驶证OCR识别接口也叫驾驶证文字识别OCR接口,指的是传入驾驶证照片,精准识别静态驾驶证图像上的文字信息。那么驾驶证OCR文字识别接口如何对接呢? 首先我们找到一家有驾驶证OCR识别接口的服务商,数脉API,然后注册账户&#xff0…

Celery + redis 异步分布式任务队列安装测试

Celery 异步分布式任务队列 Celery 5.4.0 官方文档 环境:3台 centos7.9 普通用户 redisSchedulerworkerdp951dp96111dp971 文章目录 Celery 异步分布式任务队列1、Celery 介绍2、安装部署2.1 安装消息中间件(broker)2.2 安装Celery 3、功能…

骑出好身材,女士专属,这项运动让你健康美丽两不误。

在繁忙的生活节奏中,寻找一项既能放松心情又能塑形美体的运动,成为了现代女性的新追求。骑行,这项绿色低碳的运动方式,正以其独特的魅力,成为女士们的新宠。它不仅能够带你穿梭于城市的喧嚣与自然的宁静之间&#xff0…

C++面向对象程序设计 - 虚函数

在C中,虑函数(Virtual Function)是面向对象编程(OOP)中的一个重要概念,它允许派生类(或称为子类)覆盖基类(或称为父类)中的成员函数。当通过基类指针或引用调…

遥控挖掘机之ESP8266调试心得(1)

ESP8266调试心得 1. 前言2.遇到的问题2.1 ESP8266模块建立TCP连接时候报错2.2 指令异常问题 3. 更新ESP8266固件3. ESP8266的部分AT指令3. 连接步骤3.1 模块与电脑连接3.2.1 电脑上的设置3.2.2 ESP8266模块作为客户机(TCP Cilent)的设置步骤 3.2 模块与模…

电脑硬盘故障,这5种情况要了解!

在数字化时代,电脑硬盘作为存储数据的重要设备,其稳定性和安全性直接关系到用户的数据安全和工作效率。然而,硬盘故障却是一个无法完全避免的问题。为什么会出现电脑硬盘故障?出现该问题时应该如何解决?一文带你弄懂答…

k8s部署最新版zookeeper集群(3.9.2),并配置prometheus监控

目录 zookeeper集群部署创建zookeeper文件夹namespace.yamlscripts-configmap.yamlserviceaccount.yamlstatefulset.yamlsvc-headless.yamlsvc.yamlmetrics-svc.yaml执行部署 接入prometheus访问prometheus查看接入情况导入zookeeper监控模版监控展示 zookeeper集群部署 复制粘…

Linux 操作系统TCP、UDP

1、TCP服务器编写流程 头文件&#xff1a; #include <sys/socket.h> 1.1 创建套接字 函数原型&#xff1a; int socket(int domain, int type, int protocol); 参数&#xff1a; domain: 网域 AF_INET &#xff1a; IPv4 AF_INET6 &a…

第十五届蓝桥杯省赛大学B组(c++)

很幸运拿了辽宁赛区的省一,进入6月1号的国赛啦... 这篇文章主要对第十五届省赛大学B组(C)进行一次完整的复盘,这次省赛2道填空题6道编程题: A.握手问题 把握手情景看成矩阵: 粉色部分是7个不能互相捂手的情况 由于每个人只能和其他人捂手, 所以黑色情况是不算的 1和2握手2和…

Vue+OpenLayers7入门到实战:OpenLayers解析通过fetch请求的GeoJson格式数据,并叠加要素文字标注,以行政区划边界为例

返回《Vue+OpenLayers7》专栏目录:Vue+OpenLayers7入门到实战 前言 本章介绍如何使用OpenLayers7在地图上通过fetch请求geojson数据,然后通过OpenLayers解析为Feature要素叠加到图层上,并且通过动态设置标注方式显示要素属性为文字标注。 本章还是以行政区划边界为例,这个…

大模型LLM之SFT微调总结

一. SFT微调是什么 在大模型的加持下现有的语义理解系统的效果有一个质的飞跃&#xff1b;相对于之前的有监督的Pre-Train模型&#xff1b;大模型在某些特定的任务中碾压式的超过传统nlp效果&#xff1b;由于常见的大模型参数量巨大&#xff1b;在实际工作中很难直接对大模型训…

游戏陪玩平台app小程序H5源码交付游戏陪玩接单软件游戏陪玩源码 陪玩小程序陪玩工作室运营模式陪玩管理系统游戏陪玩工作室怎么做

提供陪玩平台源码&#xff0c;陪玩系统源码&#xff0c;陪玩app源码&#xff0c;团队各部门配备齐全&#xff0c;分工明确&#xff0c;及时对接开发进度&#xff0c;保证开发效率 一、陪玩平台源码的功能介绍 1、派单大厅:陪玩系统源码的派单大厅内支持用户通过语音连麦的方式…

Vue.js-----vue组件

能够说出vue生命周期能够掌握axios的使用能够了解$refs, $nextTick作用能够完成购物车案例 Vue 生命周期讲解 1.钩子函数 目标&#xff1a;Vue 框架内置函数&#xff0c;随着组件的生命周期阶段&#xff0c;自动执行 作用: 特定的时间点&#xff0c;执行特定的操作场景: 组…

硬性清空缓存的方法

前端发布代码后&#xff0c;我们是需要刷新页面再验证的。有时候仅仅f5 或者ctrlshiftdelete快捷键仍然有历史缓存&#xff0c;这时可以通过下面的方法硬性清空缓存。 以谷歌浏览器为例&#xff0c;打开f12&#xff0c;右键点击刷新按钮&#xff0c;选择【清空缓存并硬性加载】…

Windows只能安装在GPT磁盘上

转换磁盘分区形式 步骤1. 先按照正常流程使用Windows系统安装光盘或系统U盘引导计算机。 步骤2. 在Windows安装程序中点击“开始安装”&#xff0c;然后按ShiftF10打开命令提示符。 步骤3. 依次输入以下命令&#xff0c;并在每一行命令后按一次Enter键执行。 步骤4. 等待转换…

C++ | Leetcode C++题解之第78题子集

题目&#xff1a; 题解&#xff1a; class Solution { public:vector<int> t;vector<vector<int>> ans;void dfs(int cur, vector<int>& nums) {if (cur nums.size()) {ans.push_back(t);return;}t.push_back(nums[cur]);dfs(cur 1, nums);t.po…

自动驾驶学习2-毫米波雷达

1、简介 1.1 频段 毫米波波长短、频段宽,比较容易实现窄波束,雷达分辨率高,不易受干扰。波长介于1~10mm的电磁波,频率大致范围是30GHz~300GHz 毫米波雷达是测量被测物体相对距离、相对速度、方位的高精度传感器。 车载毫米波雷达主要有24GHz、60GHz、77GHz、79GHz四个频段。 …