一文搞懂 Transformer(总体架构 三种注意力层)

本文将从Transformer的本质、Transformer_的原理_、_Transformer的应用__三个方面,带您一文搞懂Transformer(总体架构 & 三种注意力层)。

图片
节前,我们组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。

针对大模型技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何准备面试攻略、面试常考点等热门话题进行了深入的讨论。

总结链接如下:《大模型实战宝典》(2024版) 正式发布!


一、Transformer 的本质

Transformer的起源:Google Brain 翻译团队通过论文《Attention is all you need》提出了一种全新的简单网络架构——Transformer,它完全基于注意力机制,摒弃了循环和卷积操作。

图片

注意力机制是全部所需

主流的序列转换模型RNN:Transformer出来之前,主流的序列转换模型都基于复杂的循环神经网络(RNN),包含编码器和解码器两部分。当时表现最好的模型还通过注意力机制将编码器和解码器连接起来。

图片

Transformer vs RNN

循环神经网络(RNN)、特别是长短时记忆网络(LSTM)和门控循环单元网络(GRU),已经在序列建模和转换问题中牢固确立了其作为最先进方法的地位,这些问题包括语言建模和机器翻译。

图片

RNN LSTM GRU

RNN编码器-解码器架构存在一个显著的缺陷:处理长序列时,会存在信息丢失。

编码器在转化序列x1, x2, x3, x4为单个向量c时,信息可能丢失。因为所有信息被压缩到这一个向量中,增加了信息损失的风险。解码器从这一向量中提取信息也很复杂。

图片

RNN编码器-解码器架构

注意力机制:一种允许模型在处理信息时专注于关键部分,忽略不相关信息,从而提高处理效率和准确性的机制。它模仿了人类视觉处理信息时选择性关注的特点。

图片

注意力机制

当人类的视觉机制识别一个场景时,通常不会全面扫描整个场景,而是根据兴趣或需求集中关注特定的部分,如在这张图中,我们首先会注意到动物的脸部,正如注意力图所示,颜色更深的区域通常是我们最先注意到的部分,从而初步判断这可能是一只狼。

图片

注意力机制

Q、K、V:注意力机制通过查询(Q)匹配键(K)计算注意力分数(向量点乘并调整),将分数转换为权重后加权值(V)矩阵,得到最终注意力向量。

图片

Q、K、V计算注意力分数

注意力分数的价值:量化注意力机制中某一部分信息被关注的程度,反映了信息在注意力机制中的重要性。

图片

注意力分数的价值

Transformer的本质:Transformer是一种基于自注意力机制的深度学习模型,为了解决自然语言处理中的序列到序列(sequence-to-sequence)问题而设计的。

相较于RNN模型,Transformer模型具有2个显著的优势。

  • 优势一:处理长序列数据。Transformer采用自注意力机制,能够同时处理序列中的所有位置,捕捉长距离依赖关系,从而更准确地理解文本含义。而RNN模型则受限于其循环结构,难以处理长序列数据。

  • 优势二:实现并行化计算。由于RNN模型需要依次处理序列中的每个元素,其计算速度受到较大限制。而Transformer模型则可以同时处理整个序列,大大提高了计算效率。

图片

Transformer vs RNN

二、Transformer 的原理

编码器-解码器架构:Encoder-Decoder架构是自然语言处理(NLP)和其他序列到序列(Seq2Seq)转换任务中的一种常见框架。

这种架构的核心思想是将输入序列编码成一个固定大小的向量表示,然后利用这个向量来生成输出序列。

图片

RNN编码器-解码器架构

机器翻译:机器翻译就是典型Seq2Seq模型,架构包括编码器和解码器两部分。能实现从一个序列到另外一个序列的映射,而且两个序列的长度可以不相等。

图片

机器翻译

Transformer的架构:Transformer也遵循编码器-解码器总体架构,使用堆叠的自注意力机制和逐位置的全连接层,分别用于编码器和解码器,如图中的左半部分和右半部分所示。

图片

Transformer的架构

  • Encoder编码器:Transformer的编码器由6个相同的层组成,每个层包括两个子层:一个多头自注意力层和一个逐位置的前馈神经网络。在每个子层之后,都会使用残差连接和层归一化操作,这些操作统称为Add&Norm。这样的结构帮助编码器捕获输入序列中所有位置的依赖关系。

图片

Encoder(编码器)架构

  • Decoder解码器:Transformer的解码器由6个相同的层组成,每层包含三个子层:掩蔽自注意力层、Encoder-Decoder注意力层和逐位置的前馈神经网络。每个子层后都有残差连接和层归一化操作,简称Add&Norm。这样的结构确保解码器在生成序列时,能够考虑到之前的输出,并避免未来信息的影响。

图片

Decoder(解码器)架构

编码器与解码器的本质区别:在于Self-Attention的Mask机制。

图片

编码器与解码器的本质区别

Transformer的核心组件:Transformer模型包含输入嵌入、位置编码、多头注意力、残差连接和层归一化、带掩码的多头注意力以及前馈网络等组件。

图片

Transformer的核心组件

  • 输入嵌入:将输入的文本转换为向量,便于模型处理。

  • 位置编码:给输入向量添加位置信息,因为Transformer并行处理数据而不依赖顺序。

  • 多头注意力:让模型同时关注输入序列的不同部分,捕获复杂的依赖关系。

  • 残差连接与层归一化:通过添加跨层连接和标准化输出,帮助模型更好地训练,防止梯度问题。

  • 带掩码的多头注意力:在生成文本时,确保模型只依赖已知的信息,而不是未来的内容。

  • 前馈网络:对输入进行非线性变换,提取更高级别的特征。

图片

Transformer的核心组件

Transformer的3种注意力层:在Transformer架构中,有3种不同的注意力层(Self Attention自注意力、Cross Attention 交叉注意力、Causal Attention因果注意力)

  • 编码器中的自注意力层(Self Attention layer):编码器输入序列通过Multi-Head Self Attention(多头自注意力)计算注意力权重。

  • 解码器中的交叉注意力层(Cross Attention layer):编码器-解码器两个序列通过Multi-Head Cross Attention(多头交叉注意力)进行注意力转移。

  • 解码器中的因果自注意力层(Causal Attention layer):解码器的单个序列通过Multi-Head Causal Self Attention(多头因果自注意力)进行注意力计算

图片

Transformer的3种注意力层

先了解一些概念:Scaled Dot-Product Attention、Self Attention、Multi-Head Attention、Cross Attention、Causal Attention

图片

Scaled Dot-Product Attention和Multi-Head Attention

Scaled Dot-Product Attention(缩放点积注意力):输入包括维度为dk的查询(queries)和键(keys),以及维度为dv的值(values)。我们计算查询与所有键的点积,每个点积结果都除以√dk,然后应用softmax函数,以得到注意力分数。

体现如何计算注意力分数,关注Q、K、V计算公式。

图片

Scaled Dot-Product Attention(缩放点积注意力)

Self Attention(自注意力):对同一个序列,通过缩放点积注意力计算注意力分数,最终对值向量进行加权求和,从而得到输入序列中每个位置的加权表示。

表达的是一种注意力机制,如何使用缩放点积注意力对同一个序列计算注意力分数,从而得到同一序列中每个位置的注意力权重。

图片

Self Attention(自注意力)

Multi-Head Attention(多头注意力):多个注意力头并行运行,每个头都会独立地计算注意力权重和输出,然后将所有头的输出拼接起来得到最终的输出。

强调的是一种实操方法,实际操作中我们并不会使用单个维度来执行单一的注意力函数,而是通过h=8个头分别计算,然后加权平均。这样为了避免单个计算的误差。

图片

Multi-Head Attention(多头注意力)

Cross Attention(交叉注意力):输入来自两个不同的序列,一个序列用作查询(Q),另一个序列提供键(K)和值(V),实现跨序列的交互。

图片

Cross Attention(交叉注意力)

Causal Attention(因果注意力):为了确保模型在生成序列时,只依赖于之前的输入信息,而不会受到未来信息的影响。Causal Attention通过掩盖(mask)未来的位置来实现这一点,使得模型在预测某个位置的输出时,只能看到该位置及其之前的输入。

图片

Causal Attention(因果注意力)

疑问一:图中编码器明明写的是Multi-Head Attention,怎么就说是Self Attention?

图片

编码器的Self Attention

疑问一解答:Scaled Dot-Product Attention、Self Attention、Multi-Head Attention实际上说的是同一件事,从不同维度解答如何获取同一个序列中每个位置的注意力权重。图上标注Multi-Head Attention强调需要多个头计算注意力权重。

疑问二:图中编码器明明写的也是Multi-Head Attention,怎么就说是Cross Attention?

图片

编码器-解码器的Cross Attention

疑问二解答:Cross Attention、Multi-Head Attention实际上说的是也同一件事,从不同维度解答两个不同序列之间如何进行注意力转移。图上标注Multi-Head Attention强调需要多个头进行注意力转移计算。

疑问三:图中编码器明明写的也是Masked Multi-Head Attention,怎么就说是Causal Attention?

图片

解码器的Causal Attention

疑问三解答:Causal Attention、Mask Multi-Head Attention实际上说的是也同一件事,解码器中Self Attention如何结合Causal Attention来保持自回归属性。

Mask Multi-Head Attention强调使用了多个独立的注意力头,每个头都可以学习不同的注意力权重,从而增强模型的表示能力。而Causal Attention则强调了模型在预测时只能依赖于已经生成的信息,不能看到未来的信息。

三、 Transformer的应用

Transformer应用NLP:由于Transformer强大的性能,Transformer模型及其变体已经被广泛应用于各种自然语言处理任务,如机器翻译、文本摘要、问答系统等。

  • Transformer:Vaswani等人首次提出了基于注意力机制的Transformer,用于机器翻译和英语句法结构解析任务。

  • BERT:Devlin等人介绍了一种新的语言表示模型BERT,该模型通过考虑每个单词的上下文。因为它是双向的,在无标签文本上预训练了一个Transformer。当BERT发布时,它在11个NLP任务上取得了最先进的性能。

  • GPT:Brown等人在一个包含45TB压缩纯文本数据的数据集上,使用1750亿个参数预训练了一个基于Transformer的庞大模型,称为GPT-3。它在不同类型的下游自然语言任务上取得了强大的性能,而无需进行任何微调。

图片

Transformer模型及其变体

Transformer应用CV:Vision Transformer(ViT)是一种革命性的深度学习模型,它彻底改变了传统计算机视觉领域处理图像的方式。

  • ViT采用了Transformer模型中的自注意力机制来建模图像的特征,这与CNN通过卷积层和池化层来提取图像的局部特征的方式有所不同。

  • ViT模型主体的Block结构基于Transformer的Encoder结构,包含Multi-head Attention结构。

图片

Vision Transformer

ViT的本质:将图像视为一系列的“视觉单词”或“令牌”(tokens),而不是连续的像素数组。

图片

ViT的本质

ViT的工作流程:将图像分割为固定大小的图像块(patches),将其转换为Patch Embeddings,添加位置编码信息,通过包含多头自注意力和前馈神经网络的Transformer编码器处理这些嵌入,最后利用分类标记进行图像分类等任务。

图片

ViT的工作流程

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/333494.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

雷军-2022.8小米创业思考-9-爆品模式:产品力超群,具有一流口碑,最终实现海量长销的产品。人人都向往;做减法;重组创新;小白模式

第九章 爆品模式 小米方法论的第三个关键词,就是一切以产品为出发点,打造爆品模式。 大多数人对“爆品”的着眼点仅在于“爆”,也就是产品卖得好。希望产品大卖这没有错,但是“爆”是“品”的结果,爆品是打造出来的&…

单元测试(了解)

单元测试定义 针对最小功能单元(方法),编写测试代码对其进行正确性测试 之前如何进行单元测试?有什么问题? main中编写测试代码,调用方法测试 问题: 无法自动化测试 每个方法的测试可能不是…

03-02-Vue组件之间的传值

前言 我们接着上一篇文章 03-01-Vue组件的定义和注册 来讲。 下一篇文章 04-Vue:ref获取页面节点–很简单 父组件向子组件传值 我们可以这样理解:Vue实例就是一个父组件,而我们自定义的组件(包括全局组件、私有组件)…

【Vue】computed 和 methods 的区别

概述 在使用时,computed 当做属性使用,而 methods 则当做方法调用computed 可以具有 getter 和 setter,因此可以赋值,而 methods 不行computed 无法接收多个参数,而 methods 可以computed 具有缓存,而 met…

python数据分析——apply 1

参考资料:活用pandas库 apply是指把函数同时作用于DataFrame的每一行或每一列。类似于编写一些跨每行或每列的for循环,并同时调用apply函数。 1、函数 函数是对python代码进行分组和复用的一种方法。如果某段代码会被多次使用,并且使用时是需…

kubernetes(k8s) v1.30.1 创建本地镜像仓库 使用本地docker镜像仓库部署服务 Discuz X3.5 容器搭建论坛

1 master11创建本地镜像仓库 [rootmaster11 ~]# docker run -d -p 5000:5000 --restartalways --name registry registry:2 Unable to find image registry:2 locally 2: Pulling from library/registry 79e9f2f55bf5: Pull complete 0d96da54f60b: Pull complete 5b27040df…

ROS for LabVIEW:实现LabVIEW与ROS的无缝集成

ROS for LabVIEW是由Tufts大学开发的一套VI集合,旨在实现LabVIEW与ROS(Robot Operating System)的无缝集成。ROS是一个灵活的机器人软件框架,而LabVIEW则是一种强大的图形化编程工具。这个工具包的推出使得LabVIEW用户能够直接与R…

人工智能——什么是摩尔定律以及它如何影响人工智能?

1. 概述 摩尔定律是现代技术发展中一个至关重要的基石。它预言了微芯片上晶体管的数量大约每两年翻一番,这一现象导致了计算能力的指数级增长。在过去的50多年里,这一定律一直是推动技术进步的强大动力,并且对人工智能领域产生了深远的影响。…

设计模式10——装饰模式

写文章的初心主要是用来帮助自己快速的回忆这个模式该怎么用,主要是下面的UML图可以起到大作用,在你学习过一遍以后可能会遗忘,忘记了不要紧,只要看一眼UML图就能想起来了。同时也请大家多多指教。 装饰模式 是一种结构型模式。…

IDEA软件和插件安装

安装IDEA版本:IDEA windows 2021.1.3 使用该版本的IDEA,并且安装下面插件后,个人认为非常好用,并且可以不用破解,无限使用企业版,了解具体方法可以留言或私信。 记录几个好用的IDEA插件,后续持…

编程-辅助工具-Git下载

文章目录 1、前言2、Git官网地址3、迅雷下载 1、前言 采用Git能下载github上的代码,其下载是采用官网下载的,但是下载速度比较慢,网上也推荐了镜像的方式,但是有些链接失效了,突然有一天想起用迅雷是不是合适&#xf…

矩阵对角化在机器学习中的奥秘与应用

在机器学习的广阔领域中,矩阵对角化作为一种重要的数学工具,扮演着不可或缺的角色。从基础的线性代数理论到复杂的机器学习算法,矩阵对角化都在其中发挥着重要的作用。 矩阵对角化的概念与原理 矩阵对角化是矩阵理论中的一个基本概念&#x…

Windows操作系统基本知识整理

目录 引言 一、Windows操作系统的发展历史 1.1 Windows 1.0到Windows 3.0 1.2 Windows 95到Windows Me 1.3 Windows NT到Windows 2000 1.4 Windows XP到Windows 7 1.5 Windows 8到Windows 10 二、Windows操作系统的核心组件 2.1 内核 2.2 文件系统 2.3 图形用户界面&…

完全背包+背包装满 总结

目录 1.背包恰好装满 (1)问题是什么 (2)问题的有效状态和无效状态 (3)问题的常考形式,以及如何去处理 1.值的大小 2.组合个数 3.排列个数 2.例题 A. Cut Ribbon HDU1114 Piggy-Bank …

四款开源电子表格组件,轻松集成到你的项目

hello,大家好,我是徐小夕。之前和大家分享了很多可视化,零代码和前端工程化的最佳实践,最近在研究在线电子表格的技术实现,发现了几个优质的开源电子表格项目,这里和大家一起分享一下。 同时我也把其中一款…

决策树|随机森林 GBDT XGBoost|集成学习

文章目录 1 决策树模型1.1 决策树模型简介1.2 决策树模型核心问题1.2.1 分类划分标准1.2.1.1 信息增益1.2.1.2 增益率1.2.1.3 基尼系数 1.2.2 停止生长策略1.2.3 剪枝策略 1.3 决策树 - python代码1.3.1 结果解读1.3.2 决策树可视化1.3.3 CV - 留一法 2 集成学习2.1 Boosting2.…

装机必备——WinRAR安装教程

装机必备——WinRAR安装教程 软件下载 软件名称:WinRAR 软件语言:简体中文 软件大小:3.38M 系统要求:Windows7或更高, 32/64位操作系统 硬件要求:CPU2GHz ,RAM4G或更高 下载通道①迅雷云盘丨下…

生产者发送源码

具体流程 Producer先从本地尝试获取路由信息本地无缓存的路由信息时,从注册中心中获取路由信息,并缓存到本地获取到的路由信息包含了Topic下的所有Queue,Producer就可以采取负载均衡策略把消息发送到某个队列里Producer发送消息到Broker成功…

【ARMv8/v9 异常模型入门及渐进 10 -- WFI 与 WFE 使用详细介绍 1】

请阅读【ARMv8/v9 ARM64 System Exception】 文章目录 WFI 与 WFE等待事件(WFE)发送事件(SEV)本地发送事件(SEVL)WFE 唤醒事件 WFE 使用场景举例与代码实现wfe睡眠函数sev 事件唤醒函数全局监视器和自旋锁 …

5.27周报

这两周邻近毕业故没有很多时间来学习课余内容,另外最近身体有些不舒服【偏头痛】,所以学的内容不多,包括SVM向量机和ResNet【不包括代码复现】 1.SVM支持向量机的大概内容 1、目的: 主要内容是如何找到分类的那条线【超平面】—…