猫狗分类识别模型建立②模型建立

一、导入依赖库

pip install opencv-python  
pip install numpy  
pip install tensorflow
pip install keras

二、模型建立

'''
pip install opencv-python  
pip install numpy  
pip install tensorflow
pip install keras
'''
import os
import xml.etree.ElementTree as ETimport cv2
import numpy as np
from keras.layers import Input
from keras.models import Model
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.layers import Conv2D, Dense, Flatten, MaxPooling2D
from tensorflow.keras.models import Sequential
from tensorflow.keras.utils import to_categorical# 设置文件夹路径
images_dir = "imgs/"
annotations_dir = "imgs/"
num_classes = 2  # 设置类别总数
input_shape = (128, 128, 3)
# 模型名称
model_name = "dog_cat.keras"
# 用于存储图像数据和标签的列表
images = []
labels = []"""
1 dog 狗
2 cat 猫
"""
# 假设我们有一个从标签文本到标签索引的映射字典
label_to_index = {"dog": 0,"cat": 1,# ... 添加其他类别
}# 遍历文件夹加载数据
for filename in os.listdir(images_dir):if filename.endswith(".png"):image_path = os.path.join(images_dir, filename)annotation_path = os.path.join(annotations_dir, filename[:-4] + ".xml")# 读取图像image = cv2.imread(image_path)image = cv2.resize(image, (128, 128))  # 调整图像大小images.append(image)# 解析XML标注文件获取标签tree = ET.parse(annotation_path)root = tree.getroot()object_element = root.find("object")if object_element is not None:label_text = object_element.find("name").textlabel_index = label_to_index.get(label_text)if label_index is not None:labels.append(label_index)else:print(f"Warning: Unknown label '{label_text}', skipping.")# 转换为NumPy数组并进行归一化
images = np.array(images) / 255.0
labels = np.array(labels)# 确保所有的标签都是有效的整数
if labels.dtype != int:raise ValueError("Labels must contain only integers.")labels = to_categorical(labels, num_classes=num_classes)  # 假设num_classes是类别的总数# 使用Functional API定义模型
# 创建一个输入层,shape参数指定了输入数据的形状,input_shape是一个之前定义的变量,表示输入数据的维度。
inputs = Input(shape=input_shape)
# 下面的每一行都是通过一个层对数据进行处理,并将处理后的结果传递给下一个层。
# 对输入数据进行卷积操作,使用32个3x3的卷积核,并使用ReLU激活函数。结果赋值给变量x。
x = Conv2D(32, (3, 3), activation="relu")(inputs)
# 对x进行最大池化操作,池化窗口大小为2x2。这有助于减少数据的空间尺寸,从而减少计算量并提取更重要的特征。
x = MaxPooling2D(pool_size=(2, 2))(x)
# 再次进行卷积操作,这次使用64个3x3的卷积核,并继续使用ReLU激活函数。
x = Conv2D(128, (3, 3), activation="relu")(x)
# 再次进行最大池化操作,进一步减少数据的空间尺寸。
x = MaxPooling2D(pool_size=(2, 2))(x)
x = Flatten()(x)  # 将多维的数据展平为一维,以便后续可以连接到全连接层(或称为密集层)。
# 创建一个全连接层,包含64个神经元,并使用ReLU激活函数。这一层可以进一步提取和组合特征。
x = Dense(128, activation="relu")(x)
# 创建一个输出层,神经元的数量与类别的数量(num_classes)相等。使用softmax激活函数,将输出转换为概率分布。
outputs = Dense(num_classes, activation="softmax")(x)
# 使用输入和输出来创建模型实例
model = Model(inputs=inputs, outputs=outputs)  # 通过指定输入和输出来定义模型的结构。
# 编译模型,指定优化器、损失函数和评估指标
# 使用Adam优化器、分类交叉熵损失函数,并监控准确性指标。
model.compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"])# 使用图像数据和标签训练模型
# 使用fit方法训练模型,指定训练数据、训练轮次(epochs)和批处理大小(batch_size)。
model.fit(images, labels, epochs=55, batch_size=512)# 保存训练好的模型到文件
# 将训练好的模型保存为HDF5文件,以便以后加载和使用。
model.save(model_name)
# keras.saving.save_model(model, "cnn_model.keras")
# model.save("cnn_model.h5")

三、文件结构及构建的模型

①文件结构

②建立后的模型

四、模型可视化

可视化工具与兼容的python版本下载。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/336027.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[双指针] --- 快乐数 盛最多水的容器

Welcome to 9ilks Code World (๑•́ ₃ •̀๑) 个人主页: 9ilk (๑•́ ₃ •̀๑) 文章专栏: 算法Journey 本篇博客我们分享一下双指针算法中的快慢指针以及对撞双指针,下面我们开始今天的学习吧~ 🏠 快乐数 📒 题…

LabVIEW中实现Trio控制器的以太网通讯

在LabVIEW中实现与Trio控制器的以太网通讯,可以通过使用TCP/IP协议来完成。这种方法包括配置Trio控制器的网络设置、使用LabVIEW中的TCP/IP函数库进行数据传输和接收,以及处理通讯中的错误和数据解析。本文将详细说明实现步骤,包括配置、编程…

分享10个我常逛的技术社区

多逛社区,了解新鲜的事情和技术,或许会有意想不到的观点给你灵感! 国外技术交流网站合集(30个类别)的github地址: https://github.com/sdmg15/Best-websites-a-programmer-should-visit 这里收集了超过200个程序员应该…

K8s 小白入门|从电影配乐谈起,聊聊容器编排和 K8s

来听听音乐 电影,是我们生活中的重要调味剂。 配乐,是电影中不可或缺的一部分。 有的时候,配乐可以跟剧情共振,让你按捺不住自己的情绪,或眼含热泪、或慷慨激昂、或人仰马翻、或怅然若失; 有的时候&…

美团拼好饭小程序mtgsig1.2分析(补环境分析)

声明 本文章中所有内容仅供学习交流使用,不用于其他任何目的,抓包内容、敏感网址、数据接口等均已做脱敏处理,严禁用于商业用途和非法用途,否则由此产生的一切后果均与作者无关!wx a15018601872 本文章未…

【AI绘画Stable Diffusion】单人LoRA模型训练,打造你的专属模型,新手入门宝典请收藏!

大家好,我是灵魂画师向阳 本期我将教大家如何进行LoRA模型训练,打造你的专属模型,内容比较干,还请耐心看完! 随着AIGC的发展,许多传统工作岗位正逐渐被AI取代。同时,AI变革也在创造前所未有的…

【C++】---二叉搜索树

【C】---二叉搜索树 一、二叉搜索树概念二、二叉搜索树操作(非递归)1.二叉搜索树的查找 (非递归)(1)查找(2)中序遍历 2.二叉搜索树的插入(非递归)3.二叉搜索树…

三十三、openlayers官网示例Drawing Features Style——在地图上绘制图形,并修改绘制过程中的颜色

这篇讲的是使用Draw绘制图形时根据绘制形状设置不同颜色。 根据下拉框中的值在styles对象中取对应的颜色对象,new Draw的时候将其设置为style参数。 const styles {Point: {"circle-radius": 5,"circle-fill-color": "red",},LineS…

P2341 受欢迎的牛

题目描述 每一头牛的愿望就是变成一头最受欢迎的牛。现在有 N 头牛,给你 M 对整数,表示牛 A 认为牛 B 受欢迎。这种关系是具有传递性的,如果 A 认为 B 受欢迎,B 认为 C 受欢迎,那么牛 A 也认为牛 C 受欢迎。你的任务是…

UVa11604 General Sultan

UVa11604 General Sultan 题目链接题意分析AC 代码 题目链接 UVA - 11604 General Sultan 题意 给出一些0和1组成的模式串,问是否存在一个串使得有多种方案将这个串分解成模式串。    给一个包含n(n≤100)个符号的二进制编码方式&#xff…

基础—SQL—DQL(数据查询语言)基础查询

一、引言 1、介绍: 分类全称描述DQL英文全称:Data Query Language(数据查询语言)主要是学习对数据库表中的记录进行查询的语句 2、讲解 日常的开发中或者对于一个正常的业务系统中,对于查询的操作次数是远远多于数据的增删改的频次。例如…

Ansible自动化运维中的Setup收集模块应用详解

作者主页:点击! Ansible专栏:点击! 创作时间:2024年5月22日13点14分 💯趣站推荐💯 前些天发现了一个巨牛的🤖人工智能学习网站,通俗易懂,风趣幽默&#xf…

ABB 控制柜

1,主计算机:相当于电脑的主机,用于存放系统和数据,需要24V直流电才能工作。执行用户编写的程序,控制机器人进行响应的动作。主计算机有很多接口,比如与编程PC连接的服务网口、用于连接示教器的网口、连接轴…

揭秘网络编程:同步与异步IO模型的实战演练

摘要 ​ 在网络编程领域,同步(Synchronous)、异步(Asynchronous)、阻塞(Blocking)与非阻塞(Non-blocking)IO模型是核心概念。尽管这些概念在多篇文章中被广泛讨论,它们的抽象性使得彻底理解并非易事。本文旨在通过具体的实验案例,将这些抽象…

深入解析Web前端三大主流框架:Angular、React和Vue

Web前端三大主流框架分别是Angular、React和Vue。下面我将为您详细介绍这三大框架的特点和使用指南。 Angular 核心概念: 组件(Components): 组件是Angular应用的构建块,每个组件由一个带有装饰器的类、一个HTML模板、一个CSS样式表组成。组件通过输入(@Input)和输出(…

【Python】解决Python报错:TypeError: %d format: a number is required, not str

🧑 博主简介:阿里巴巴嵌入式技术专家,深耕嵌入式人工智能领域,具备多年的嵌入式硬件产品研发管理经验。 📒 博客介绍:分享嵌入式开发领域的相关知识、经验、思考和感悟,欢迎关注。提供嵌入式方向…

.NET 直连SAP HANA数据库

前言 上个项目碰到的需求,IT部门要求直连SAP的HANA数据库,以只读的权限读取SAP部门开发的CDS视图,是个有点复杂的工程,需要从成品一直往前追溯到原材料的产地,和交货单、工单、采购订单有相当程度上的关联 IT部门要求…

会议管理系统(含源码+sql+视频导入教程)

👉文末查看项目功能视频演示获取源码sql脚本视频导入教程视频 1 、功能描述 会议管理系统拥有两种角色 管理员:部门管理、员工管理、会议管理、会议室管理、预订会议、添加员工、注册员工审批等 用户:个人通知中心、预订会议、查看所有会议…

错误记录:从把项目从Tomcat8.5.37转到Tomcat10.1.7

错误信息:在本地Servlet项目里没有报错,但是浏览器跳转该servlet时报错 型 异常报告 消息 实例化Servlet类[com.wangdao.lx.MyServlet1]异常 描述 服务器遇到一个意外的情况,阻止它完成请求。 例外情况 jakarta.servlet.ServletExceptio…

四川汇聚荣聚荣科技有限公司是正规的吗?

在当今社会,随着科技的飞速发展,越来越多的科技公司如雨后春笋般涌现。然而,在这个信息爆炸的时代,如何判断一家公司是否正规成为了许多人关注的焦点。本文将围绕“四川汇聚荣聚荣科技有限公司是否正规”这一问题展开讨论&#xf…