AI大模型-机器学习中的集成学习

机器学习中的集成学习

集成学习概述及主要研究领域
1.1 集成学习概述💥

“众人拾柴火焰高”、“三个臭皮匠顶个诸葛亮”等词语都在表明着群体智慧的力量,所谓的“群体智慧”指的就是一群对某个主题具有平均知识的人集中在一起可以对某一些问题提供出更加可靠的答案。原因在于,汇总结果能够抵消噪音,得出的结论通常可以优于知识渊博的专家。同样的规则也适用于机器学习领域。 在机器学习中,群体智慧是通过集成学习实现的,所谓集成学习(ensemble learning),是指通过构建多个弱学习器,然后结合为一个强学习器来完成分类任务并获得比单个弱分类器更好的效果。严格来说,集成学习并不算是一种分类器,而是一种学习器结合的方法。

1.2 集成学习的三大关键领域💥

在过去十年中,人工智能相关产业蓬勃发展,计算机视觉、自然语言处理、语音识别等领域不断推陈出新、硕果累累,但热闹是深度学习的,机器学习好似什么也没有。2012年之后,传统机器学习占据的搜索、推荐、翻译、各类预测领域都被深度学习替代或入侵,在招聘岗位中,69%的岗位明确要求深度学习技能,传统机器学习算法在这一场轰轰烈烈的人工智能热潮当中似乎有些被冷落了。

在人工智能大热的背后,集成学习就如同裂缝中的一道阳光,凭借其先进的思想、优异的性能杀出了一条血路,成为当代机器学习领域中最受学术界和产业界青睐的领域。
😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

从今天的眼光来看,集成学习是:
  • 当代工业应用中,唯一能与深度学习算法分庭抗礼的算法
  • 数据竞赛高分榜统治者,KDDcup、Kaggle、天池、DC冠军队御用算法
  • 在搜索、推荐、广告等众多领域,事实上的工业标准和基准模型
  • 任何机器学习/深度学习工作者都必须掌握其原理、熟读其思想的领域

在集成学习的发展历程中,集成的思想以及方法启发了众多深度学习和机器学习方面的工作,在学术界和工业界都取得了巨大的成功。今天,集成学习可以被分为三个主要研究领域:

  • 弱分类器集成 弱分类器集成主要专注于对传统机器学习算法的集成,这个领域覆盖了大部分我们熟悉的集成算法和集成手段,如装袋法bagging,提升法boosting。这个领域试图设计强大的集成算法、来将多个弱学习器提升成为强学习器。
  • 模型融合 模型融合在最初的时候被称为“分类器结合”,这个领域主要关注强评估器,试图设计出强大的规则来融合强分类器的结果、以获取更好的融合结果。这个领域的手段主要包括了投票法Voting、堆叠法Stacking、混合法Blending等,且被融合的模型需要是强分类器。模型融合技巧是机器学习/深度学习竞赛中最为可靠的提分手段之一,常言道:当你做了一切尝试都无效,试试模型融合。
  • 混合专家模型(mixture of experts) 混合专家模型常常出现在深度学习(神经网络)的领域。在其他集成领域当中,不同的学习器是针对同一任务、甚至在同一数据上进行训练,但在混合专家模型中,我们将一个复杂的任务拆解成几个相对简单且更小的子任务,然后针对不同的子任务训练个体学习器(专家),然后再结合这些个体学习器的结果得出最终的输出。
2 简单集成技术

在正式学习集成算法之前,我们先来了解一下简单的集成技术。

2.1 投票法💢

投票法主要用于分类问题中,主要流程是:使用N个弱分类器对每个样本进行预测,每个弱分类器得到的预测结果都被视为“投票”,对于同一个样本来说,会得到N个投票,N个投票中最多的那个类别即为这个样本最终的预测结果。也就是说,投票法的主要规则就是少数服从多数

代码语言:javascript

复制

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from scipy import statsfrom sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier as KNN
from sklearn.tree import DecisionTreeClassifier as DTC
from sklearn.linear_model import LogisticRegression as LRdata = load_breast_cancer()
X = data.data
y = data.target
Xtrain,Xtest,Ytrain,Ytest = train_test_split(X,y,test_size=0.3,random_state=0)model1 = KNN()
model2 = DTC()
model3 = LR()model1.fit(Xtrain,Ytrain)
model2.fit(Xtrain,Ytrain)
model3.fit(Xtrain,Ytrain)pred1 = model1.predict(Xtest)
pred2 = model2.predict(Xtest)
pred3 = model3.predict(Xtest)final_pred = []
for i in range(Xtest.shape[0]):final_pred.append(stats.mode([pred1[i],pred2[i],pred3[i]])[0][0])from sklearn.metrics import accuracy_score
accuracy_score(Ytest,final_pred)
# 0.9707602339181286print(model1.score(Xtest,Ytest))
print(model2.score(Xtest,Ytest))
print(model3.score(Xtest,Ytest))# 0.9473684210526315
# 0.9298245614035088
# 0.9532163742690059
2.2 平均法💢

平均法主要用于回归类问题,主要流程是:使用N个弱分类器对每个样本进行预测,每个样本的最终预测值就是N个弱分类器输出的预测结果的平均值。

代码语言:javascript

复制

from sklearn.datasets import load_diabetes
from sklearn.neighbors import KNeighborsRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.linear_model import LinearRegressiondata = load_diabetes()
X = data.data
y = data.target
Xtrain,Xtest,Ytrain,Ytest = train_test_split(X,y,test_size=0.3,random_state=0)reg1 = KNeighborsRegressor()
reg2 = DecisionTreeRegressor(max_depth=2)
reg3 = LinearRegression()reg1.fit(Xtrain,Ytrain)
reg2.fit(Xtrain,Ytrain)
reg3.fit(Xtrain,Ytrain)# 对测试集中前20个样本进行预测
Xt = Xtest[:20] 
p1 = reg1.predict(Xt)
p2 = reg2.predict(Xt)
p3 = reg3.predict(Xt)# 使用平均法得到最终预测结果
p_final = (p1+p2+p3)/3# 绘制前20个样本的可视化结果plt.figure(figsize=(8,5))
plt.plot(p1, "gd", label="KNeighborsRegressor")
plt.plot(p2, "b^", label="DecisionTreeRegressor")
plt.plot(p3, "ys", label="LinearRegression")
plt.plot(p_final, "r*", ms=10, label="average")
plt.plot(Ytest[:20],"ko",label="Label")plt.xticks(range(20))
plt.ylabel("predicted")
plt.xlabel("training samples")
plt.legend(loc=1, bbox_to_anchor=(1.4,1.0))
plt.grid(axis='x')
plt.title("Regressor predictions and their average")plt.show()

img

代码语言:javascript

复制

print(reg1.score(Xt,Ytest[:20]))
print(reg2.score(Xt,Ytest[:20]))
print(reg3.score(Xt,Ytest[:20]))# 0.38569680255687555
# 0.4245152879688403
# 0.5350833277174876from sklearn.metrics import r2_score
r2_score(Ytest[:20],p_final)# 0.4956095743088209
2.3 加权平均法💢

这个是平均法的改进版,指的是给不同模型加上不同的权重,这个可以定义每个模型对于预测结果的重要性。一般来说,弱分类器效果好的我们会给更高的权重。需要注意的是,所有弱分类器的权重之和等于1。

代码语言:javascript

复制

print(reg1.score(Xt,Ytest[:20]))
print(reg2.score(Xt,Ytest[:20]))
print(reg3.score(Xt,Ytest[:20]))# 结果
0.38569680255687555
0.4245152879688403
0.5350833277174876# 使用加权平均法得到最终预测结果
p_Wfinal = p1*0.2+p2*0.2+p3*0.6r2_score(Ytest[:20],p_Wfinal)# 0.5208586019573234
3 高级集成技术
3.1 Bagging💯

Bagging(又称为装袋法),是所有集成方法中最为简单也最为常用的操作之一。Bagging这个名字其实是Bootstrap Aggregating的缩写,顾名思义,Bagging的两个关键点就是引导和聚合。Bagging方法主要是通过结合几个模型的结果来降低方差、避免过拟合,并提高准确率和稳定性。

Bagging方法的执行步骤主要分为两部分:

  • 通过随机采样(Bootstrap)的方法产生不同的训练数据集,然后分别基于这些训练集建立多个弱学习器
  • 通过投票法或者平均法对多个弱学习器的结果进行聚合(Aggregating),得到一个相对更优的预测模型(强学习器)。

img


这个过程中,需要注意的是:

  • 每个采样集都是从原始数据集中有放回的随机抽样出来的,这个方法也叫做自主采样法(Bootstap sampling)。也就是说对于m个样本的原始数据集,每次随机选取一个样本放入采样集,然后把这个样本重新放回原数据集中,然后再进行下一个样本的随机抽样,直到一个采样集中的数量达到m,这样一个采样集就构建好了,然后我们可以重复这个过程,生成n个这样的采样集。也就是说,每个采样集中的样本可能是重复的,也可能原数据集中的某些样本根本就没抽到,并且每个采样集中的样本分布可能都不一样。

img

  • 在Bagging集成当中,我们并行建立多个弱评估器(通常是决策树,也可以是其他非线性算法),并综合多个弱评估器的结果进行输出。当集成算法目标是回归任务时,集成算法的输出结果是弱评估器输出的结果的平均值,当集成算法的目标是分类任务时,集成算法的输出结果是弱评估器输出的结果使用投票法(少数服从多数)。

假设现在一个bagging集成算法当中有7个弱评估器,对任意一个样本而言,输出的结果如下:

代码语言:javascript

复制

import numpy as np#分类的情况:输出7个弱评估器上的分类结果(012)
r_clf = np.array([0,2,1,1,2,1,0])np.bincount(r_clf)np.argmax(np.bincount(r_clf))result_clf = np.argmax(np.bincount(r_clf))
result_clf #集成算法在现在的样本上应该输出的类别#如果评估器的数量是偶数,而少数和多数刚好一致怎么办?
r_clf = np.array([1,1,1,0,0,0,2,2])
result_clf = np.argmax(np.bincount(r_clf))
result_clf#回归的情况:输出7个弱评估器上的回归结果
r_reg = np.array([-2.082, -0.601, -1.686, -1.001, -2.037, 0.1284, 0.8500])
result_reg = r_reg.mean()
result_reg# -0.9183714285714285
3.2 Boosting adaboost、gbdt,xgboost💯

boosting又称为提升法,它是一个迭代的过程,用来自适应地改变训练样本的分布,使得弱分类器聚焦到那些很难分类的样本上。它的做法是给每一个训练样本赋予一个权重,在每一轮训练结束时自动地调整权重。

boosting方法的流程,如下图所示:

img

首先给每个样本一个初始权重D1(通常初始权重为1),使用带着初始权重D1的样本集对模型进行训练得到第一个弱学习器,然后第一个弱学习器对所有的样本进行预测,有些样本会预测正确,有些样本则会预测错误,此时得到一个误差率e1,预测正确的样本就减少这些样本的权重,预测错误的样本就增加这些样本的权重,也就是让模型更加关注预测错误的那些样本,那么之后所有的样本权重就会发生改变,此时样本权重变为D2,继续使用带着权重D2的样本集对模型进行训练得到弱学习器2,然后弱学习器2对所有的样本进行预测……直到训练出N个弱学习器。然后对这N个弱学习器进行加权平均得到一个强学习器。

3.3 Bagging vs Boosting 💯

在Bagging算法中,我们一次性建立多个平行独立的弱评估器,并让所有评估器并行运算。在Boosting集成算法当中,我们逐一建立多个弱评估器(基本是决策树),并且下一个弱评估器的建立方式依赖于上一个弱评估器的评估结果,最终综合多个弱评估器的结果进行输出,因此Boosting算法中的弱评估器之间不仅不是相互独立的、反而是强相关的,同时Boosting算法也不依赖于弱分类器之间的独立性来提升结果,这是Boosting与Bagging的一大差别。如果说Bagging不同算法之间的核心区别在于靠以不同方式实现“独立性”(随机性),那Boosting的不同算法之间的核心区别就在于上一个弱评估器的评估结果具体如何影响下一个弱评估器的建立过程


与Bagging算法中统一的回归求平均、分类少数服从多数的输出不同,Boosting算法在结果输出方面表现得十分多样。早期的Boosting算法的输出一般是最后一个弱评估器的输出,当代Boosting算法的输出都会考虑整个集成模型中全部的弱评估器。一般来说,每个Boosting算法会其以独特的规则自定义集成输出的具体形式,但对大部分算法而言,集成算法的输出结果往往是关于弱评估器的某种结果的加权平均,其中权重的求解是boosting领域中非常关键的步骤。

img

img

4 基于Bagging和Boosting的机器学习算法
4.1 sklearn中的bagging算法💫

在sklearn当中,我们可以接触到两个Bagging集成算法,一个是随机森林(RandomForest),另一个是极端随机树(ExtraTrees),他们都是以决策树为弱评估器的有监督算法,可以被用于分类、回归、排序等各种任务。同时,我们还可以使用bagging的思路对其他算法进行集成,比如使用装袋法分类的类BaggingClassifier对支持向量机或逻辑回归进行集成。

4.2 sklearn中的Boosting算法💫

在sklearn当中,我们可以接触到数个Boosting集成算法,包括Boosting入门算法AdaBoost,性能最稳定、奠定了整个Boosting效果基础的梯度提升树GBDT(Gradient Boosting Decision Tree),以及近几年才逐渐被验证有效的直方提升树(Hist Gradient Boosting Tree)。

在过去5年之间,除了sklearn,研究者们还创造了大量基于GBDT进行改造的提升类算法,这些算法大多需要从第三方库进行调用,例如极限提升树XGBoost(Extreme Gradient Boosting Tree),轻量梯度提升树LightGBM(Light Gradiant Boosting Machine),以及离散提升树CatBoost(Categorial Boosting Tree)。

img

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的zi yuan得到学习提升
😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些P DF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.2.1 什么是Prompt
    • L2.2.2 Prompt框架应用现状
    • L2.2.3 基于GPTAS的Prompt框架
    • L2.2.4 Prompt框架与Thought
    • L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
    • L2.3.1 流水线工程的概念
    • L2.3.2 流水线工程的优点
    • L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
    • L3.1.1 Agent模型框架的设计理念
    • L3.1.2 Agent模型框架的核心组件
    • L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
    • L3.2.1 MetaGPT的基本概念
    • L3.2.2 MetaGPT的工作原理
    • L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
    • L3.3.1 ChatGLM的特点
    • L3.3.2 ChatGLM的开发环境
    • L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
    • L3.4.1 LLAMA的特点
    • L3.4.2 LLAMA的开发环境
    • L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习zhi nan已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/346523.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

UE 像素流与 Web 协同开发

UE 像素流与 Web 协同开发 创建Web端应用Web向UE发送消息emitCommandemitConsoleCommandemitUIInteraction UE接收Web的消息UE向Web发送消息Web接收UE的消息UE 冻结帧 与Web交互主要涉及两个方面,一个是UE向Web发送消息,另一个就是Web端向UE程序发送消息…

5分钟在阿里云上部署了超级玛丽小游戏,是一种什么样的体验?

大家好,我是java1234_小锋老师,作为程序设计开发人员,云部署项目是最基本的技能。所以锋哥分享下如何在阿里云上部署项目,我们以部署超级玛丽网页小游戏为例,教大家熟悉Linux云服务器,熟悉宝塔应用&#xf…

影视制作的未来:云渲染+虚拟制作+AI生成技术

在计算机技术和人工智能技术飞速发展的2024年,影视制作正在经历一场前所未有的变革。云渲染、虚拟制作和AI生成等新影视制作技术的结合,正在重新定义数字内容的创作流程,为影视产业带来了全新的可能性和机遇。这些前沿技术不仅提高了制作效率…

Elasticsearch 为时间序列数据带来存储优势

作者:来自 Elastic Martijn Van Groningen, Kostas Krikellas 背景 Elasticsearch 最近投资了对存储和查询时间序列数据的更好支持。存储效率一直是关注的主要领域,许多项目取得了巨大的成功,与将数据保存在标准索引中相比,可以节…

电子设计新纪元:三品PLM系统在快速变革中的适应性

随着科技的飞速发展,电子行业正经历着前所未有的变革。产品生命周期的缩短、技术迭代的加速以及市场竞争的加剧,都对电子行业提出了更高的管理要求。在这样的背景下,传统的产品数据管理PDM和产品生命周期管理PLM系统显得力不从心。本文将探讨…

H.264官方文档下载

H.264是ITU(International Telecommunication Union,国际通信联盟)和MPEG(Motion Picture Experts Group,运动图像专家组)联合制定的视频编码标准。其官方文档可以在ITU官网上下载:https://www.…

使用 OPENAI API 微调 GPT-3 的 Ada 模型

前言 本文主要是介绍了使用 openai 提供的 api 来完成对开放出来的模型进行微调操作。开放的模型有 curie 、babbage、ada 等,我这里以微调 ada 举例,其他类似。 需要提前安装好 openai 所需要的各种库,我这里的库版本是 openai-0.25.0 。以…

【已解决】chrome视频无法自动播放的问题

问题: 在用datav开发大屏的时候,放了一个视频组件,但是发现视频组件即使设置了自动播放,仍然无法自动播放 原因: 76 以上版本的谷歌浏览器只能在系统静音下自动播放 解决: 音频自动播放浏览器白名单设置&…

计算机网络期末考试知识点(关键词:江中)

目录 大家端午节快乐呀!又到了一年两度的期末考试月了,这里给大家整理了一些复习知识点,大家可以边吃粽子边复习,事半功倍哈哈哈。祝各位期末过!过!过!。 1 第一章 计算机网络体系结构 计算机…

WT32-ETH01作为TCP Server进行通讯

目录 模块简介WT32-ETH01作为TCP Server设置W5500作为TCP Client设置连接并进行通讯总结 模块简介 WT32-ETH01网关主要功能特点: 采用双核Xtensa⑧32-bit LX6 MCU.集成SPI flash 32Mbit\ SRAM 520KB 支持TCP Server. TCP Client, UDP Server. UDP Client工作模式 支持串口、wi…

安全生产新篇章:可燃气体报警器检验周期的国家标准解读

随着工业化进程的加快,安全生产成为了重中之重。 可燃气体报警器作为预防火灾和爆炸事故的重要设备,其准确性和可靠性直接关系到企业的生产安全和员工的生命财产安全。 因此,国家对可燃气体报警器的检验周期有着明确的规定,以确…

【Java面试】十二、Kafka相关

文章目录 1、Kafka如何保证消息不丢失1.1 生产者发消息到Brocker丢失:设置异步发送1.2 消息在Broker存储时丢失:发送确认机制1.3 消费者从Brocker接收消息丢失1.4 同步 异步组合提交偏移量 2、Kafka如何保证消费的顺序性3、Kafka高可用机制3.1 集群模式…

小程序自定义marker弹出框教程

需求背景 微信小程序开发,需要使用腾讯地图显示自定义marker,并且点击marker后弹出自定义的customCallout,并且customCallout的内容为用户点击marker的时候再从后台接口获取数据。 百度了一圈后发现居然没有一篇文章可以一次性完成&#xf…

Polar Web【简单】upload

Polar Web【简单】upload Contents Polar Web【简单】upload思路EXPPythonGo 运行&总结 思路 如题目所说,本题考查的是文件上传漏洞的渗透技巧。 打开环境,发现需要上传的是图片文件,故考虑使用截取数据包进行数据修改进行重放。在重发器…

王学岗鸿蒙开发(北向)——————(十三)音乐播放器

AudioRenderer适合录音 AVPlayer:简单的本地单曲播放 MP3文件放置的地方 import media from ohos.multimedia.media import common from ohos.app.ability.common; Entry Component struct Index {//第1步:avPlayer:media.AVPlayer nullasync onPageShow(){//第…

AI-知识库搭建(一)腾讯云向量数据库使用

一、AI知识库 将已知的问答知识,问题和答案转变成向量存储在向量数据库,在查找答案时,输入问题,将问题向量化,匹配向量库的问题,将向量相似度最高的问题筛选出来,将答案提交。 二、腾讯云向量数…

Nvidia/算能 +FPGA+AI大算力边缘计算盒子:医疗健康智能服务

作为国产运动医学的领导者,致力于提供运动医学的整体临床解决方案,公司坐落于北京经济技术开发区。应用于肩关节、膝关节、足/踝关节、髋关节、肘关节、手/腕关节的运动医学设备、植入物和手术器械共计300多个品规通过NMPA的批准,临床应用于国…

AJAX 跨域

这里写目录标题 同源策略JSONPJSONP 是怎么工作的JSONP 的使用原生JSONP实践CORS 同源策略 同源: 协议、域名、端口号 必须完全相同、 当然网页的URL和AJAX请求的目标资源的URL两者之间的协议、域名、端口号必须完全相同。 AJAX是默认遵循同源策略的,不…

AI漫画赛道,10分钟快速赚钱秘诀!

AI百宝箱-Chatgpt4.0、Midjourney绘画、人工智能绘画、AI换脸、AI图片放大、AI图片分析、AI图片融合https://h5.cxyhub.com/?invitationhmeEo7 先使用ChatGPT写小说 ComicAI 漫画小说生成网站 1. 创建小说漫画 2. 故事模板 3. 生成角色形…

【Linux】ls命令

这个命令主要是用于显示指定工作目录下之内容(列出目前工作目录所含的文件及子目录)。 掌握几个重点的常使用的就可以: ls -l # 以长格式显示当前目录中的文件和目录 ls -a # 显示当前目录中的所有文件和目录&am…