笔记 | 用go写个docker

仅作为自己学习过程的记录,不具备参考价值

前言

看到一段非常有意思的话:

很多人刚接触docker的时候就会感觉非常神奇,感觉这个技术非常新颖,其实并不然,docker使用到的技术都是之前已经存在过的,只不过旧酒换了新瓶罢了。简单来说docker本质其实是一个特殊的进程,这个进程特殊在它被NamespaceCgroup技术做了装饰,Namespace将该进程与Linux系统进行隔离开来,让该进程处于一个虚拟的沙盒中,而Cgroup则对该进程做了一系列的资源限制,两者配合模拟出来一个沙盒的环境。

本文的学习地址/参考文档:

  • 从零自制docker
  • manpages.ubuntu.com
  • github
  • segmentfault.com
  • juejin.im
  • 地鼠文档
感谢大佬的写作,受益良多。自认一介尘民做喜欢且能安身立命之本乃人生一大幸事
本文只是对照其进行的拙劣模仿 以及自己半猜测式的研究记录。如有疑问 欢迎指出,感谢

代码环境配置

因为我是在Windows里面写代码,然后进行交叉编译到Linux,所以这里要更改下环境,因为在不同的环境中,go导入的文件也是不同,如果我们的环境使用的Windows,那么使用os/exec包时,导入的将是exec_windows.go,而如果我们的环境是Linux,那么将会导入exec_linux.go文件,因为只有Linux才会给创建进程时提供这个隔离参数,所以我们需要把环境改成Linux
GoLand配置


进程隔离

clone系统调用

  • CLONE_NEWPID:
当程序代码调用clone时,设定了CLONE_NEWPID,就会创建一个新的PID Namespace,clone出来的新进程将成为Namespace里的第一个进程。一个PID Namespace为进程提供了一个独立的PID环境,PID Namespace内的PID将从1开始,在Namespace内调用fork,vfork或clone都将产生一个在该Namespace内独立的PID。新创建的Namespace里的第一个进程在该Namespace内的PID将为1,就像一个独立的系统里的init进程一样。该Namespace内的孤儿进程都将以该进程为父进程,当该进程被结束时,该Namespace内所有的进程都会被结束。PID Namespace是层次性,新创建的Namespace将会是创建该Namespace的进程属于的Namespace的子Namespace。子Namespace中的进程对于父Namespace是可见的,一个进程将拥有不止一个PID,而是在所在的Namespace以及所有直系祖先Namespace中都将有一个PID。系统启动时,内核将创建一个默认的PID Namespace,该Namespace是所有以后创建的Namespace的祖先,因此系统所有的进程在该Namespace都是可见的。
  • CLONE_NEWIPC:
当调用clone时,设定了CLONE_NEWIPC,就会创建一个新的IPC Namespace,clone出来的进程将成为Namespace里的第一个进程。一个IPC Namespace有一组System V IPC objects 标识符构成,这标识符有IPC相关的系统调用创建。在一个IPC Namespace里面创建的IPC object对该Namespace内的所有进程可见,但是对其他Namespace不可见,这样就使得不同Namespace之间的进程不能直接通信,就像是在不同的系统里一样。当一个IPC Namespace被销毁,该Namespace内的所有IPC object会被内核自动销毁。
  • PID Namespace和IPC Namespace:
PID Namespace和IPC Namespace可以组合起来一起使用,只需在调用clone时,同时指定CLONE_NEWPID和CLONE_NEWIPC,这样新创建的Namespace既是一个独立的PID空间又是一个独立的IPC空间。不同Namespace的进程彼此不可见,也不能互相通信,这样就实现了进程间的隔离。
  • CLONE_NEWNS:
当调用clone时,设定了CLONE_NEWNS,就会创建一个新的mount Namespace。每个进程都存在于一个mount Namespace里面,mount Namespace为进程提供了一个文件层次视图。如果不设定这个flag,子进程和父进程将共享一个mount Namespace,其后子进程调用mount或umount将会影响到所有该Namespace内的进程。如果子进程在一个独立的mount Namespace里面,就可以调用mount或umount建立一份新的文件层次视图。该flag配合pivot_root系统调用,可以为进程创建一个独立的目录空间。
  • CLONE_NEWNET:
当调用clone时,设定了CLONE_NEWNET,就会创建一个新的Network Namespace。一个Network Namespace为进程提供了一个完全独立的网络协议栈的视图。包括网络设备接口,IPv4和IPv6协议栈,IP路由表,防火墙规则,sockets等等。一个Network Namespace提供了一份独立的网络环境,就跟一个独立的系统一样。一个物理设备只能存在于一个Network Namespace中,可以从一个Namespace移动另一个Namespace中。虚拟网络设备(virtual network device)提供了一种类似管道的抽象,可以在不同的Namespace之间建立隧道。利用虚拟化网络设备,可以建立到其他Namespace中的物理设备的桥接。当一个Network Namespace被销毁时,物理设备会被自动移回init Network Namespace,即系统最开始的Namespace。
  • CLONE_NEWUTS:
当调用clone时,设定了CLONE_NEWUTS,就会创建一个新的UTS Namespace。一个UTS Namespace就是一组被uname返回的标识符。新的UTS Namespace中的标识符通过复制调用进程所属的Namespace的标识符来初始化。Clone出来的进程可以通过相关系统调用改变这些标识符,比如调用sethostname来改变该Namespace的hostname。这一改变对该Namespace内的所有进程可见。CLONE_NEWUTS和CLONE_NEWNET一起使用,可以虚拟出一个有独立主机名和网络空间的环境,就跟网络上一台独立的主机一样。
  • 集合
以上所有clone flag都可以一起使用,为进程提供了一个独立的运行环境。LXC正是通过在clone时设定这些flag,为进程创建一个有独立PID,IPC,FS,Network,UTS空间的container。一个container就是一个虚拟的运行环境,对container里的进程是透明的,它会以为自己是直接在一个系统上运行的。

Namespace隔离

package mainimport ("log""os""os/exec""syscall"
)func main() {cmd := exec.Command("sh")// 设置新的Namespacecmd.SysProcAttr = &syscall.SysProcAttr{//设置了系统调用的属性,特别是Cloneflags,它指定了新进程将使用哪些Namespace。//syscall.CLONE_NEWNS隔离了挂载点//syscall.CLONE_NEWUTS隔离了主机名和域名//syscall.CLONE_NEWPID隔离了进程ID//syscall.CLONE_NEWNET隔离了网络Cloneflags: syscall.CLONE_NEWNS |syscall.CLONE_NEWUSER |syscall.CLONE_NEWIPC |syscall.CLONE_NEWUTS |syscall.CLONE_NEWPID |syscall.CLONE_NEWNET,}//将新命令的输入、输出和错误输出重定向到当前进程的对应文件描述符cmd.Stdin = os.Stdincmd.Stdout = os.Stdoutcmd.Stderr = os.Stderrif err := cmd.Run(); err != nil {log.Fatal(err)}
}

构建过程不多赘述,直接丢到ubuntu上测试一下:

SET CGO_ENABLED=0
SET GOOS=linux
SET GOARCH=amd64
go build -o main

效果如下,外部的主机名并没有被改变,说明我们的go进程成功将自身的hostname与外部hostname进行了隔离。
命名空间隔离运行效果

设置容器的UID和GID

Linux系统中,每个进程都与特定的用户ID(UID)和组ID(GID)关联,这些ID决定了进程对文件、设备和系统资源的访问权限。在传统的Linux系统中,这些ID是全局的,意味着系统中的每个UIDGID在任何时候都指向相同的用户或用户组。

随着容器技术的发展,出现了一种对这些ID进行隔离的需求,以便在容器环境中提供安全性和多租户隔离。用户命名空间(User Namespaces)Linux内核的一个特性,使这种隔离成为可能。

当你创建一个新的用户命名空间时,可以定义一个UIDGID的映射,这个映射告诉内核如何将命名空间内的ID转换为命名空间外的主机系统ID。这样,即使是容器内部以root身份运行的进程,在宿主机中也可以被限制为非特权用户,从而提高了安全性。

UidMappings 和 GidMappings 字段

UidMappingsGidMappings字段是在创建新的用户命名空间时使用的,它们定义了容器内部ID和宿主机ID之间的映射关系。这些字段是syscall.SysProcAttr结构体的一部分,当使用CLONE_NEWUSER标志创建新的用户命名空间时,需要设置这些字段。

举个栗子
UidMappings: []syscall.SysProcIDMap{{ContainerID: 1,HostID:      0,Size:        1,},
},
GidMappings: []syscall.SysProcIDMap{{ContainerID: 1,HostID:      0,Size:        1,},
},

这里的映射定义了以下关系:

  • ContainerID: 1:这是命名空间内部使用的UID/GID。在此例中,我们使用的是编号为1的ID。
  • HostID: 0:这是宿主机上的UID/GID,编号0通常代表root用户/组。
  • Size: 1:这表示映射的范围。大小为1意味着只有一个UID/GID被映射。

在这个映射中,我们说命名空间内部的UID/GID 1对应于宿主机的root用户/组。这意味着,在此用户命名空间中运行的进程,尽管它可能以UID 1执行,但它在命名空间外部(宿主机上)被视为root用户。因此,这个进程在宿主机角度看来有root权限,但是这通常不是我们期望的。通常,我们希望在容器内部拥有较高权限的进程,在宿主机上对应为较低权限的用户,以提供更强的安全隔离。

实践

在实际的容器环境中,通常会将容器内部的root用户(UID 0)映射到宿主机上的一个非特权用户。例如,UID映射可能如下所示:

UidMappings: []syscall.SysProcIDMap{{ContainerID: 0, // 容器内的root用户HostID:      1000, // 宿主机上的非特权用户Size:        1,},
},

在这个例子中,容器内部的root用户(ContainerID: 0)实际上是宿主机上的UID 1000,这通常是一个普通用户。这样,即使容器内部的进程以root身份运行,它也只有宿主机上普通用户的权限,从而限制了它可能造成的安全风险。
在新增用户映射后代码如下:

cmd := exec.Command("sh")cmd.SysProcAttr = &syscall.SysProcAttr{Cloneflags: syscall.CLONE_NEWNS |syscall.CLONE_NEWUSER |syscall.CLONE_NEWIPC |syscall.CLONE_NEWUTS |syscall.CLONE_NEWPID |syscall.CLONE_NEWNET,// 设置容器的UID和GIDUidMappings: []syscall.SysProcIDMap{{ContainerID: 0,HostID: 1000,Size:   1,},},GidMappings: []syscall.SysProcIDMap{{ContainerID: 0,HostID: 1000,Size:   1,},},}

资源限制

cgroups(控制组)是一种内核特性,用于限制、记录和隔离进程组所使用的物理资源(如CPU、内存、磁盘I/O等)。在Go语言中,我们可以通过操作/sys/fs/cgroup下的文件来与cgroups交互。这涉及到文件系统的操作,比如创建目录、写入文件等,这些都可以通过Go标准库中的os包来实现。

基础概念

在开始编写代码之前,我们需要了解cgroups的一些基础概念:

  • Cgroup子系统:cgroups将其功能按资源类型划分为多个子系统,如cpumemoryblkio
  • Cgroup层级:每个子系统可以挂载到一个或多个层级,每个层级可以创建多个cgroup
  • Cgroup:每个cgroup代表一组进程,并且每个cgroup都可以设置资源限制或统计

使用Go操作cgroups大致可以分为以下几个步骤:

  • 挂载cgroup子系统:通常在Linux系统启动时,cgroup子系统就已经被挂载。你可以在/sys/fs/cgroup目录下看到各种资源类型的目录
  • 创建cgroup:通过在相应的子系统目录下创建新目录来创建cgroup
  • 添加进程到cgroup:将进程ID写入到cgroup目录的cgroup.procs文件中
  • 设置资源限制:通过修改或写入特定的配置文件(如memory.limit_in_bytes)来设置资源限制
  • 清理:任务完成后,删除cgroup以释放资源
实际在ubuntu上操作一下,首先创建一个挂载点目录:
mkdir CgroupTest
挂载hierarchy
mount -t cgroup -o none,name=CgroupTest CgroupTest ./CgroupTest/

查看内容:
查看内容

  • cgroup.clone_childrensubsystem会读取该文件,如果该文件里面的值为1的话,那么子 cgroup将会继承父cgroupcpuset配置
  • cgroup.procs:记录当前节点cgroup中的进程组ID
  • task: 标识该cgroup下的进程ID,如果将某个进程的ID写到该文件中,那么便会将该进程加入到当前的cgroup
新建子cgroup

只要在挂载了hierarchy的目录下,新建一个子目录,那么新的子目录会被自动标记为该cgroup的子cgroup
新建子cgroup
这个目录1就是CgroupTest的子cgroup,默认情况下,他会继承父cgroup的配置

通过subsystem 限制cgroup中进程的资源

上述创建的hierarchy并没有关联到任何的subsystem,所以没办法通过上面的hierarchy中的cgroup节点来限制进程的资源占用,其实系统默认已经为每个subsystem创建了一个默认的hierarchy,它在Linux/sys/fs/cgroup路径下:
/sys/fs/cgroup
如果想限制某个进程ID的内存,那么就在/sys/fs/cgroup/memory目录下创建一个限制mermorycgroup,只要创建一个文件夹即可,kernel会自动把该文件夹标记为一个cgroup,我们来尝试一下:
内存限制
可以看到该目录下,自动给我们创建出来了很多限制资源文件,我们只要将进程ID写到该文件夹下的task文件中,然后修改名叫meory.limit_in_bytes的文件内容,就能限制该进程的内存使用。
如果在这时你打算删掉这些测试目录,可能会发现:即使你使用了root用户,依旧无法删除/sys/fs/cgroup/memory/下的目录文件:
删除
此时你可以去检查该cgroup的连接:

lsof | grep /sys/fs/cgroup/memory/CgroupTest1

如果查到有连接直接kill掉,然后使用rmdir命令进行删除:

rmdir CgroupTest1/

rmdir删除

Go中使用Cgroup

package mainimport ("fmt""io/ioutil""os""os/exec""path""strconv""syscall"
)const (// 挂载memory subsystem的hierarchy的根目录位置cgroupMemoryHierarchyMount = "/sys/fs/cgroup/memory"
)func main() {if os.Args[0] == "/proc/self/exe" {//容器进程fmt.Printf("current pid %d \n", syscall.Getpid())cmd := exec.Command("sh", "-c", "stress --vm-bytes 200m --vm-keep -m 1")cmd.SysProcAttr = &syscall.SysProcAttr{}cmd.Stdin = os.Stdincmd.Stdout = os.Stdoutcmd.Stderr = os.Stderrif err := cmd.Run(); err != nil {fmt.Printf("Error running stress command: %v\n", err)return}}cmd := exec.Command("/proc/self/exe")cmd.SysProcAttr = &syscall.SysProcAttr{Cloneflags: syscall.CLONE_NEWNS |syscall.CLONE_NEWUSER |syscall.CLONE_NEWIPC |syscall.CLONE_NEWUTS |syscall.CLONE_NEWPID |syscall.CLONE_NEWNET,}if err := cmd.Start(); err != nil {fmt.Printf("Error starting process: %v\n", err)return}// 得到 fork出来进程映射在外部命名空间的pidfmt.Printf("New process PID: %+v\n", cmd.Process.Pid)// 创建子cgroupnewCgroup := path.Join(cgroupMemoryHierarchyMount, "Cgroup-Test")if err := os.Mkdir(newCgroup, 0755); err != nil {fmt.Printf("Error creating cgroup: %v\n", err)return}defer os.RemoveAll(newCgroup)// 将容器进程放到子cgroup中if err := ioutil.WriteFile(path.Join(newCgroup, "tasks"), []byte(strconv.Itoa(cmd.Process.Pid)), 0644); err != nil {fmt.Printf("Error adding process to cgroup: %v\n", err)return}// 限制cgroup的内存使用if err := ioutil.WriteFile(path.Join(newCgroup, "memory.limit_in_bytes"), []byte("100m"), 0644); err != nil {fmt.Printf("Error setting memory limit: %v\n", err)return}
}

在运行该代码之前需要确保服务器上已经安装了stress命令,且该程序的执行结果应该为报错结束。因为我们只给了cgroup100M的内存,但是我们模拟了200M的内存压力。

未完待续

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/351005.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何在Spring Boot中实现图片上传至本地和阿里云OSS

在开发Web应用时,处理文件上传是常见的需求之一,尤其是在涉及到图片、视频等多媒体数据时。本文将详细介绍如何使用Spring Boot实现图片上传至本地服务器以及阿里云OSS存储服务,并提供完整的代码示例。 一、上传图片至本地 首先&#xff0c…

CMU最新论文:机器人智慧流畅的躲避障碍物论文详细讲解

CMU华人博士生Tairan He最新论文:Agile But Safe: Learning Collision-Free High-Speed Legged Locomotion 代码开源:Code: https://github.com/LeCAR-Lab/ABS B站实际效果展示视频地址:bilibili效果地址 我会详细解读论文的内容,让我们开始吧…

这个网站有点意思,可做SPRINGBOOT的启动图

在 SpringBoot 项目的 resources 目录下新建一个 banner.txt 文本文件,然后将启动 Banner 粘贴到此文本文件中,启动项目,即可在控制台展示对应的内容信息。 下面这个工具很好用,收藏精哦

C/C++:指针用法详解

C/C:指针 指针概念 指针变量也是一个变量 指针存放的内容是一个地址,该地址指向一块内存空间 指针是一种数据类型 指针变量定义 内存最小单位:BYTE字节(比特) 对于内存,每个BYTE都有一个唯一不同的编号…

积木搭建游戏-第13届蓝桥杯省赛Python真题精选

[导读]:超平老师的Scratch蓝桥杯真题解读系列在推出之后,受到了广大老师和家长的好评,非常感谢各位的认可和厚爱。作为回馈,超平老师计划推出《Python蓝桥杯真题解析100讲》,这是解读系列的第83讲。 积木搭建游戏&…

QT属性系统,简单属性功能快速实现 QT属性的简单理解 属性学习如此简单 一文就能读懂QT属性 QT属性最简单的学习

4.4 属性系统 Qt 元对象系统最主要的功能是实现信号和槽机制,当然也有其他功能,就是支持属性系统。有些高级语言通过编译器的 __property 或者 [property] 等关键字实现属性系统,用于提供对成员变量的访问权限,Qt 则通过自己的元对…

回归预测 | Matlab实现GWO-ESN基于灰狼算法优化回声状态网络的多输入单输出回归预测

回归预测 | Matlab实现GWO-ESN基于灰狼算法优化回声状态网络的多输入单输出回归预测 目录 回归预测 | Matlab实现GWO-ESN基于灰狼算法优化回声状态网络的多输入单输出回归预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.Matlab实现GWO-ESN基于灰狼算法优化回声状态…

软件下载网站源码附手机版和图文教程

PHP游戏应用市场APP软件下载平台网站源码手机版 可自行打包APP,带下载统计,带多套模板,带图文教程,可以做软件库,也可以做推广app下载等等,需要的朋友可以下载 源码下载 软件下载网站源码附手机版和图文…

Guava-EventBus 源码解析

EventBus 采用发布订阅者模式的实现方式,它实现了泛化的注册方法以及泛化的方法调用,另外还考虑到了多线程的问题,对多线程使用时做了一些优化,观察者模式都比较熟悉,这里会简单介绍一下,重点介绍的是如何泛化的进行方法的注册以及…

FineReport简单介绍

一、介绍 官网 :FineReport产品简介- FineReport帮助文档 - 全面的报表使用教程和学习资料 报表是以表格、图表的形式来动态展示数据,企业通过报表进行数据分析,进而用于辅助经营管理决策。 FineReport 是一款用于报表制作,分析和…

uniapp中unicloud接入支付宝订阅消息完整教程

经过无数次的尝试,终于还是让我做出来了 准备工作 设置接口加签方式 使用支付宝小程序订阅消息,首先要设置接口加签方式,需要下载支付宝开放平台密钥工具,按照步骤生成秘钥,然后按照支付宝设置密钥加签方式添加接口加签方式。 有一点需要注意的,因为要在云函数中使用,…

Mac M3 Pro安装Hadoop-3.3.6

1、下载Hadoop安装包 可以到官方网站下载,也可以使用网盘下载 官网下载地址:Hadoop官网下载地址 网盘地址:https://pan.baidu.com/s/1p4BXq2mvby2B76lmpiEjnA?pwdr62r提取码: r62r 2、解压并添加环境变量 # 将安装包移动到指定目录 mv …

基于flask的网站如何使用https加密通信-问题记录

文章目录 项目场景:问题1问题描述原因分析解决步骤解决方案 问题2问题描述原因分析解决方案 参考文章 项目场景: 项目场景:基于flask的网站使用https加密通信一文中遇到的问题记录 问题1 问题描述 使用下面的命令生成自签名的SSL/TLS证书和…

大模型基础——从零实现一个Transformer(3)

大模型基础——从零实现一个Transformer(1)-CSDN博客 大模型基础——从零实现一个Transformer(2)-CSDN博客 一、前言 之前两篇文章已经讲了Transformer的Embedding,Tokenizer,Attention,Position Encoding, 本文我们继续了解Transformer中剩下的其他组件. 二、归一化 2.1 L…

红队攻防渗透技术实战流程:中间件安全:JettyJenkinsWeblogicWPS

红队攻防渗透实战 1. 中间件安全1.1 中间件-Jetty-CVE&信息泄漏1.2 中间件-Jenkins-CVE&RCE执行1.2.1 cve_2017_1000353 JDK-1.8.0_291 其他版本失效1.2.2 CVE-2018-10008611.2.3 cve_2019_100300 需要用户帐号密码1.3 中间件-Weblogic-CVE&反序列化&RCE1.4 应…

使用python绘制三维曲线图

使用python绘制三维曲线图 三维曲线图定义特点 效果代码 三维曲线图 三维曲线图(3D曲线图)是一种用于可视化三维数据的图表,它展示了数据在三个维度(X、Y、Z)上的变化。 定义 三维曲线图通过在三维坐标系中绘制曲线…

数据结构之线性表(4)

前面我们了解到线性表中的顺序表、链表等结构,今天我们探讨新的一种线性表——栈。 那么我们开始栈的探讨之旅吧。 1.栈的基本概念 1.1栈(Stack): 是只允许在一端进行插入或删除的线性表。首先栈是一种线性表,但限定…

sudo 用户切换

切换到centos 用户 sudo -i -u centos 解决centos sudo执行仍旧显示Permission denied 方法一(建议) 暂时切换到root用户 sudo -i然后执行命令即可 方法二 赋给当前用户权限: sudo chmod -R 777 目录路径 sudo chmod 777 文件路径.txt…

IDEA 设置主题、背景图片、背景颜色

一、设置主题 1、点击菜单 File -> Settings : 点击 Settings 菜单 2、点击 Editor -> Color Scheme -> Scheme, 小哈的 IDEA 版本号为 2022.2.3 , 官方默认提供了 4 种主题: Classic Light (经典白) ;Darcula (暗黑主…

2.2 抽头

目录 为什么要抽头 什么是抽头 接入系数 怎么抽头 信号源端抽头 负载端抽头 例题分析 要点总结 为什么要抽头 阻抗转换,使信号源内阻Rs与负载电阻RL变得很大,分流小,再使用并联方式。 什么是抽头 接入系数 电容越大,分压越…