【Linux】 进程信号的发生

在这里插入图片描述

送给大家一句话:
何必向不值得的人证明什么,生活得更好,乃是为你自己。
-- 亦舒

进程信号的发生

  • 1 何为信号
  • 2 信号概念的基础储备
  • 3 信号产生
    • kill系统调用
    • alarm系统调用
    • 异常
    • core term
  • Thanks♪(・ω・)ノ谢谢阅读!!!
  • 下一篇文章见!!!

1 何为信号

生活中信号随处可见,我们的生活离不开信号。就比如过红路灯,看见绿灯亮的信号,我们就可以过马路了;听见闹钟响了,我们知道时间到了;看见别人脸色不好,我们就知道他有心事…所以信号在生活中随时可以产生(与我们的动作是异步的):

  1. 我们可能认识这个信号,知道这个信号如何处理。
  2. 但是当信号产生时,我们可能在做着其他事情,会把信号暂时不做处理。
  3. 暂不处理就要求我们记得这个信号,并确定什么时候处理。

对此,如果把上面的“我们”换成“进程”,就是进程中的信号了!我们可以看看在Linux系统下的信号:
在这里插入图片描述
信号时从 1 - 64 的数字对应信号(32 - 64 是实时信号,暂不考虑)

信号的生命周期可以划分为:预备 -> 产生 -> 保存 -> 处理 。我们把这个过程研究明白就可以了

2 信号概念的基础储备

信号是Linux系统通过的一种向目标进程发送指定事件的方式。要做识别和处理。

信号产生时异步的:对于一个进程不知道什么时候会收到信号,他只能先做自己的事情,信号产生时也不知道进程在干什么,所以是异步的!!!

先说明一个概念信号处理有三种(只能三选一):

  1. 默认动作 — 进程处理信号都是默认的 ,通常是终止自己(term , core),暂停 ,忽略…
    在这里插入图片描述

  2. 忽略动作

  3. 自定义动作 — 信号的捕捉 : signal(int signum, sighandler_t handler) ,该函数可以捕捉signum信号,并执行自定义的handler函数
    在这里插入图片描述

接下来我们来看看signal函数的使用:对信号的自定义捕捉 ,只需捕捉一次,后续就一直有效!!!

#include <signal.h>
#include <iostream>
#include <sys/types.h>
#include <unistd.h>void handler(int sig)
{std::cout << "get sig:" << sig << std::endl;
}int main()
{//对信号的自定义捕捉 ,只需捕捉一次,后续就一直有效!!!signal(2, handler);while (true){std::cout << "pid :" << getpid() << std::endl;sleep(1);}return 0;
}

该程序的功能是每隔一秒打印出当前进程的ID,并且当接收到SIGINT信号*(2号信号)时,会调用handler函数打印出信号编号。通常情况下,当你运行这个程序并按下Ctrl+C时,程序会打印出"get sig:2"并继续运行,因为它已经处理了SIGINT信号。如果你想要终止程序,使用kill命令。

来看效果:
在这里插入图片描述
我们也可以多设置一些捕捉:

signal(2, handler);
signal(3, handler);
signal(4, handler);
signal(5, handler);

这样可以与之捕捉对应的信号!

如何理解信号的发送和处理??? 浅度理解:

进程我们知道是通过task_struct来管理的,里面有一个uint32_t signal变量,其收到的信号是通过位图来保存的(1 - 31比特位分别代表 1 - 31 号信号)。
那么发送信号:就是修改指定进程pcb的信号的指定位图 0 -> 1。也就是“写信号”
通过上面的分析,发送信号改变了内核数据结构,而这个工作只能是OS来进行,所以只有OS可以发送信号

那么kill信号能向进程发送信号!还有其他可以发送信号的方式吗?我们来看:

3 信号产生

信号产生的方式有以下几种:

  1. 通过kill命令:向指定进程发送指定的信号
  2. 键盘可以产生信号:我们常用的ctrl + c (2号信号)和 ctrl + \(3号信号)都可以向进程发送信号
  3. 系统调用:
    • int kill(pid_t pid, int sig)
      在这里插入图片描述
      该系统调用可以向pid对应的进程,发送sig信号。发送成功返回 1 反之返回 0。
    • 还有 int raise(int sig); 系统调用是向当前进程发送指定信号。比较简单奥。
    • 还有 void abort(void); 库函数异常终止当前进程。是对应的6号信号(终止会打印Aborted!)其特殊的性质是可以被捕捉,但是进程还是会被终止掉,就是为了防止发生所有信号都被捕捉,没有信号可以终止的情况,9号信号和19号信号不能被自定义捕捉!!!
  4. 软件条件:
    我们回忆一下:管道的读端关闭、写端一直进行时 — 系统就会关闭管道(因为该管道无意义)发送13号信号SIGPIPE。也就在软件层面某些条件不满足而产生的信号!这里着重介绍一下alarm系统调用。
  5. 异常 :进程非法操作的时候,OS会发送信号!让进程崩溃(默认是终止进程,也可以进行捕捉异常信号。推荐终止进程!)

接下来我们来看看一下kill系统调用 、 alarm系统调用 、 异常。

kill系统调用

#include <signal.h>
#include <iostream>
#include <sys/types.h>
#include <unistd.h>
#include <string>void handler(int sig)
{std::cout << "get sig:" << sig << std::endl;
}
// ./mykill 2 277015
int main(int argc , char* argv[])
{if(argc != 3) {std::cerr << "Usage: " << argv[0] << " signum pid" << std::endl;return 1;}uint32_t sig = std::stoi(argv[1]);pid_t pid = std::stoi(argv[2]);//发送信号kill(pid , sig);return 0;
}

这样我们就被kill系统调用进行了一个封装!
我们使用一下来看:
在这里插入图片描述
成功向目标进行发送指定信号!

alarm系统调用

在这里插入图片描述
alarm系统调用会设置一个时间为seconds的“闹钟”,时间到了就会发送信号14) SIGALRM
我们设置一个闹钟看看

#include <signal.h>
#include <iostream>
#include <sys/types.h>
#include <unistd.h>
#include <string>
#include <cstdio>int main()
{int cnt = 1;alarm(1); //设定1秒的闹钟while(true){std::cout << cnt << std::endl;cnt++;}
}

运行看看:
在这里插入图片描述
1s后就停止了!因为14号信号对应的是term会进行终止!
在这里插入图片描述
我们也可以进行一个捕捉

#include <signal.h>
#include <iostream>
#include <sys/types.h>
#include <unistd.h>
#include <string>
#include <cstdio>void handler(int sig)
{std::cout << "get sig:" << sig << std::endl;exit(1);
}int main()
{int cnt = 1;signal(SIGALRM , handler);alarm(1); //设定1秒的闹钟while(true){std::cout << cnt << std::endl;cnt++;}
}

在这里插入图片描述
成功捕捉到是14号信号!

如果我们不加上每次IO的输出,只在最后打印一次,我们会发现cnt会达到近10亿。
这就验证了IO是很慢的一个过程!因为IO的本质是向外设进行输出数据,外设的传输速度肯定比内存慢!!!

alarm的本质是通过时间戳来比对,在设置闹钟的那一刻,操作系统会获取当前时间戳,然后加上闹钟时间得到一个新的时间戳。在以后的运行中不断和系统时间戳进行比对,相等的时候是就是闹钟的结束时刻!!!

操作系统对闹钟的管理是也是通过内核数据结构struct alarm,并通过最小堆来进行。按照过期时间来排序,最上面的闹钟到时间了就进行pop,这样就可以进行一个管理!

闹钟的返回值是什么意义呢? 闹钟的返回值是上一个闹钟的剩余时间(alarm(0)表示取消闹钟)

注意闹钟默认只触发一次

void handler(int sig)
{alarm(1); //设定1秒的闹钟std::cout << "get sig:" << sig << std::endl;
}int main()
{int cnt = 1;signal(SIGALRM , handler);alarm(1); //设定1秒的闹钟while(true){std::cout << cnt << std::endl;cnt++;}
}

这样可以设置出一个一直在运行的闹钟:
在这里插入图片描述

异常

在学习C语言之初,一定接触过这样的代码:

int main()
{while(true){int a = 100;a /= 0;// int *p = nullptr;// *p = 100;}return 0;
}

我们运行看看:
在这里插入图片描述
运行起来就崩溃了!
再来试试

int *p = nullptr;
*p = 100;

在这里插入图片描述
也崩溃了,那么为什么程序会崩溃呢???

因为程序非法访问,导致OS给进程发送信号,进程就崩溃了。来捕捉信号来证明一下:

void handler(int sig)
{std::cout << "get sig:" << sig << std::endl;exit(1);
}int main()
{signal(SIGFPE , handler);while(true){std::cout << "pid :" << getpid() << std::endl;int a = 100;a /= 0;}
}

运行看看:
在这里插入图片描述
这样就说明崩溃是因为收到了OS发送的信号!

那么OS是怎样知道进程进行非法操作的呢?以浮点数错误为例:

在CPU 运算中,数据是储存在内存中的。CPU可以进行算术运算和逻辑元素

CPU中有大量的寄存器,其中有一个eflag状态寄存器,在里面有一个溢出标记位,运算时出现溢出,溢出标记为为1,就证明出错了(10 / 0 首先会转换为加法运算,导致无限循环溢出)。这时候操作系统就要处理这种硬件问题!即向目标进程发送信号!

那为什么不退出就会一直发信号?

因为寄存器只有一套,但是寄存器里面的数据是属于每一个进程的 — 对应硬件上下文的保存与恢复。如果进程不退出,下一次调度的时候,对寄存器的数据进行恢复时,就会触发溢出标记位的错误,OS就会又一次发送信号!!!
这也就是为什么推荐终止进程 — 释放进程的上下文数据,包括溢出标记位数据和其他异常数据!

段错误也是硬件的问题,空指针无法通过页表(实际上是MMU内存管理模块进行操作)映射到物理地址,会发生错误!

CR2 - 控制寄存器2:
用于存储导致页错误的线性地址,当发生页错误异常时,CPU会自动将出错的线性地址加载到CR2中。
CR3 - 控制寄存器3:
包含页目录基址寄存器(PDBR),用于存储页目录表的物理地址,是分页机制的关键组成部分。
错误的地址会放入CR2中 , 触发故障。

core term

上面我们看到了许多信号的默认动作是core term 。他们有什么区别?
我们来看,进程退出时有一个status,其中的core dump字段我们来仔细看看。
在这里插入图片描述

  1. core : 异常终止,但是会形成一个debug文件(默认在云服务器是关闭的)
  2. term : 直接异常终止

debug文件是什么,我们一起看看:

在这里插入图片描述
首先默认是不能创建的,我们要进行一个修改:
在这里插入图片描述
接下来我们运行就会产生了一个core文件!!!,里面记录了错误信息!

Thanks♪(・ω・)ノ谢谢阅读!!!

下一篇文章见!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/351135.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

会声会影色彩校正在哪里 会声会影色彩素材栏在哪 会声会影中文免费版下载

会声会影是一款功能强大的视频编辑软件&#xff0c;它可以帮助用户轻松地编辑和制作视频。在进行视频编辑时&#xff0c;色彩校正是一个重要的步骤&#xff0c;它可以调整视频的色调、亮度和对比度等参数&#xff0c;使视频更加生动和鲜明。在会声会影中&#xff0c;色彩校正功…

linux 部署瑞数6实战(维普,药监局)第一部分

声明 本文章中所有内容仅供学习交流使用&#xff0c;不用于其他任何目的&#xff0c;抓包内容、敏感网址、数据接口等均已做脱敏处理&#xff0c;严禁用于商业用途和非法用途&#xff0c;否则由此产生的一切后果均与作者无关&#xff01;wx 本文章未经许可禁止转载&…

深入浅出談 隐马尔可夫的概念(2/ 2)-- 训练理论

文章目录 一、说明二、HMM 三大问题三、评估问题——前向-后向算法四、.解码问题——维特比算法五、学习问题——EM算法六、 连续隐马尔可夫 一、说明 在许多机器学习的章节中&#xff0c;常常遇见 HMM &#xff0c;往往看到它的数学式子后&#xff0c;就当没看到似的跳过去了…

【Python网络爬虫分步走】使用LXML解析网页数据

Python网络爬虫分步走 – 使用LXML解析网页数据 Web Scraping in Python - Using LXML to Parse Web Data By Jackson@ML Lxml作为Python的第三方库,提供易用的且功能强大的API,用来解析XML和HTML文档。事件驱动的API被用于分步骤解析。 本文简要介绍使用lxml库解析网页的基…

UML与设计模式

1、关联关系 关联关系用于描述不同类的对象之间的结构关系&#xff0c;它在一段时间内将多个类的实例连接在一起。关联关系是一种静态关系&#xff0c;通常与运行状态无关&#xff0c;而是由“常识”、“规则”、“法律”等因素决定的&#xff0c;因此关联关系是一种强关联的关…

北斗三代一体式数传终端短报文

北斗三代一体式数传终端短报文M20C-V30针对船载通信和导航应用推出的一款支持北斗 RDSS/RNSS 功能的船载一体机。北斗数传终端内部集成了北斗多频天线、射频、基带以及主控等功能单元&#xff0c;可实现 RDSS 定位、短报文通信和 RNSS 导航定位等功能。M20C-V30型北斗数传终端体…

牛客练习题打卡(06-15)

run方法线程执行体 .start方法开启多线程 在java中 &#xff0c; 整数类型默认int,带小数默认double ; 如果要指定长整型加L&#xff1b;如果要指定为单精度加F ; 在java中&#xff0c;重载要求方法名相同&#xff0c; 参数列表必须不同&#xff08;个数不同、或类型不同、参数…

Nginx+KeepAlived高可用负载均衡集群的部署

目录 一.KeepAlived补充知识 1.一个合格的群集应该具备的特点 2.健康检查&#xff08;探针&#xff09;常用的工作方式 3.相关面试问题 问题1 问题2 二.Keepealived脑裂现象 1.现象 2.原因 硬件原因 运用配置原因 3.解决 4.预防 方法1 方法2 方法3 方法4 三.…

WWDC 2024 回顾:Apple Intelligence 的发布与解析

一年一度的苹果全球开发者大会&#xff08;WWDC&#xff09;如期而至&#xff0c;2024 年的 WWDC 再次成为科技界的焦点。本次发布会中&#xff0c;苹果正式推出了他们在 AI 领域的全新战略——Apple Intelligence。这一全新概念旨在为用户打造“强大、易用、全面、个性化、注重…

DC/AC电源模块:为电动车充电基础设施提供高效能源转换

BOSHIDA DC/AC电源模块&#xff1a;为电动车充电基础设施提供高效能源转换 DC/AC电源模块是一种用于电动车充电基础设施的重要组件&#xff0c;它能够实现高效能源转换。在电动车的普及和推广过程中&#xff0c;DC/AC电源模块的重要性日益凸显。本文将从DC/AC电源模块的基本原…

CSS 实现个人资料卡

CSS 实现个人资料卡 效果展示 CSS 知识点 CSS 综合知识运用 页面整体布局 <div class"card"><div class"imgBox"><img src"./bg.jpg" /></div><div class"content"><div class"details&quo…

springboot+vue前后端分离项目中使用jwt实现登录认证

文章目录 一、后端代码1.响应工具类2.jwt工具类3.登录用户实体类4.登录接口5.测试接口6.过滤器7.启动类 二、前端代码1.登录页index 页面 三、效果展示 一、后端代码 1.响应工具类 package com.etime.util;import com.etime.vo.ResponseModel; import com.fasterxml.jackson.…

38、基于卷积神经网络(CNN)的车牌自动识别系统(matlab)

1、原理及流程 1&#xff09;原理 CNN&#xff08;卷积神经网络&#xff09;是一种深度学习模型&#xff0c;可以用于图像识别和分类任务。车牌自动识别系统的原理基本上就是使用CNN模型对车牌图像进行处理和识别。 首先&#xff1a;系统需要收集大量的含有车牌的图像数据作…

Vue2+Element-ui实现el-table表格自适应高度

效果图 新建指令 Vue.directive(height, {inserted(el, _binding, vnode) {const paginationRef vnode.context.$refs.paginationRefconst calculateHeight () > {const windowHeight window.innerHeightconst topOffset el.getBoundingClientRect().topconst otherEle…

Java 网站开发入门指南:如何用java写一个网站

Java 网站开发入门指南&#xff1a;如何用java写一个网站 Java 作为一门强大的编程语言&#xff0c;在网站开发领域也占据着重要地位。虽然现在 Python、JavaScript 等语言在网站开发中越来越流行&#xff0c;但 Java 凭借其稳定性、可扩展性和丰富的生态系统&#xff0c;仍然…

【SpringBoot】SpringBoot:构建实时聊天应用

文章目录 引言项目初始化添加依赖 配置WebSocket创建WebSocket配置类创建WebSocket处理器 创建前端页面创建聊天页面 测试与部署示例&#xff1a;编写单元测试 部署扩展功能用户身份验证消息持久化群组聊天 结论 引言 随着实时通信技术的快速发展&#xff0c;聊天应用在现代We…

redis aof写入以及aof重写的源码分析

这里写目录标题 版本aof的面试问题aof正常写入流程aof重写流程 版本 redis&#xff1a;6.2.7 aof的面试问题 最近找工作&#xff0c;面试被问倒了&#xff0c;记录一下 比如redis的aof指令会不会丢失&#xff1f;比如在重写aof的什么新来的操作怎么办&#xff1f; 在重写的…

【云计算】Docker部署Nextcloud网盘并实现随地公网远程访问

配置文件 切换root权限&#xff0c;新建一个nextcloud的文件夹&#xff0c;进入该目录&#xff0c;创建docker-compose.yml [cpslocalhost ~]$ su root Password: 666666 [rootlocalhost cps]# ls Desktop Documents Downloads Music Pictures Public Templates Vide…

【面经总结】Java集合 - Map

Map 概述 Map 架构 HashMap 要点 以 散列(哈希表) 方式存储键值对&#xff0c;访问速度快没有顺序性允许使用空值和空键有两个影响其性能的参数&#xff1a;初始容量和负载因子。 初始容量&#xff1a;哈希表创建时的容量负载因子&#xff1a;其容量自动扩容之前被允许的最大…

CPP多线程

什么是多线程&#xff1f; 多线程是一种允许程序同时运行多个线程的技术。每个线程可以执行不同的任务&#xff0c;这在处理需要并发执行的操作时&#xff08;例如&#xff0c;处理多个客户端的网络服务器&#xff0c;或者图形用户界面应用程序&#xff09;非常有用。多线程能够…