四十七、openlayers官网示例Image Filters——给地图添加锐化、浮雕、边缘等滤镜效果

 官网demo示例:

Image Filters

这篇讲的是如何给地图添加滤镜。

一看代码,,好家伙,信息量满满,全都看不懂。。。

咱只能一段一段扒。。。

首先添加一个底图到地图上,这个好理解。

    const imagery = new TileLayer({source: new OGCMapTile({url: "https://maps.gnosis.earth/ogcapi/collections/NaturalEarth:raster:HYP_HR_SR_OB_DR/map/tiles/WebMercatorQuad",crossOrigin: "",}),});const map = new Map({layers: [imagery],target: "map",view: new View({center: fromLonLat([-120, 50]),zoom: 6,}),});

 新建一个对象定义了一组卷积核。

    const kernels = {none: [0, 0, 0, 0, 1, 0, 0, 0, 0], //无sharpen: [0, -1, 0, -1, 5, -1, 0, -1, 0], //锐化滤波器sharpenless: [0, -1, 0, -1, 10, -1, 0, -1, 0], //增强图像的边缘和细节,但比 sharpen 更强烈。blur: [1, 1, 1, 1, 1, 1, 1, 1, 1], //平滑滤波器,通过对邻域像素值求平均来模糊图像shadow: [1, 2, 1, 0, 1, 0, -1, -2, -1], //阴影滤波器emboss: [-2, 1, 0, -1, 1, 1, 0, 1, 2], //浮雕滤波器edge: [0, 1, 0, 1, -4, 1, 0, 1, 0], //边缘检测滤波器};

 等等,啥叫卷积核?

卷积操作是一种通过一个卷积核矩阵(kernel)来滤波图像的技术,它可以实现各种图像效果,比如锐化、模糊、阴影、浮雕和边缘检测等。

 

 啥叫卷积核矩阵?

卷积核是一个 3x3 的矩阵,每个元素代表像素在滤波时的权重。卷积操作通过将这个卷积核在图像上滑动,将核矩阵与图像中的每个 3x3 区域逐个相乘,然后求和,生成新的像素值。

例如,对于 sharpen 卷积核:

0  -1  0
-1  5 -10 -1  0

这个卷积核在图像上滑动时,会增强中心像素值(乘以 5)并减弱周围像素值(乘以 -1)。通过这种方式,不同的卷积核可以实现各种图像处理效果,如锐化、模糊、浮雕等。 

卷积核进行归一化处理函数:

function normalize(kernel) {// 获取卷积核的长度const len = kernel.length;// 创建一个与卷积核相同长度的新数组const normal = new Array(len);let i,sum = 0;// 计算卷积核中所有元素的总和for (i = 0; i < len; ++i) {sum += kernel[i];}// 如果总和小于等于0,设置sum为1并标记为未归一化if (sum <= 0) {normal.normalized = false;sum = 1;} else {// 如果总和大于0,标记为已归一化normal.normalized = true;}// 将卷积核中的每个元素除以总和,得到归一化后的值for (i = 0; i < len; ++i) {normal[i] = kernel[i] / sum;}// 返回归一化后的卷积核return normal;}

将卷积核中的每个元素除以总和 sum,以确保所有元素的总和为1。这样可以保证在卷积操作过程中,图像的整体亮度不会改变 。

看到这,你是不是也跟我一样还有点懵,没事,咱们记住这句话就行:

 卷积核是一个 3x3 的矩阵,每个元素代表像素在滤波时的权重。卷积操作通过将这个卷积核在图像上滑动,将核矩阵与图像中的每个 3x3 区域逐个相乘,然后求和,生成新的像素值。

也就是说,我们得获取图像中的像素数据,然后通过卷积核一类的计算操作,将图像的存储数据进行修改,生成一个新图像,最终实现滤镜效果。

那么问题来了,图像的数据是怎么存储的呢?

function convolve(context, kernel) {const canvas = context.canvas;const width = canvas.width;const height = canvas.height;const inputData = context.getImageData(0, 0, width, height).data;// 创建一个新的 ImageData 对象用于输出图像数据const output = context.createImageData(width, height);const outputData = output.data;}

使用 context.getImageData(0, 0, width, height).data来获取图像上的数据,打印一下,看到以下数组:

 对于一个图像来说,inputData 中的数据是按像素顺序存储的,每个像素占用 4 个连续的数组元素,分别表示该像素的红、绿、蓝和透明度(Alpha)值。具体结构如下:

[ R, G, B, A, R, G, B, A, R, G, B, A, ... ]

假设我们有一个 2x2 像素的图像,其像素颜色如下:

  • (0, 0): 红色 (255, 0, 0, 255)
  • (1, 0): 绿色 (0, 255, 0, 255)
  • (0, 1): 蓝色 (0, 0, 255, 255)
  • (1, 1): 白色 (255, 255, 255, 255)

inputData 将会是:

[ 255, 0, 0, 255, 0, 255, 0, 255, 0, 0, 255, 255, 255, 255, 255, 255 ]

每四个一组,刚好存储了四个像素点的值。 

这里有个小细节,我们在css中写颜色时透明度的取值是0-100,但实际上,计算机存储的时候范围是0-255,所以这里的透明度的取值是0-255。 

知道了图像结构,我们可以在数组中获取单个像素的值。

假设我们有一个宽度为 width 的图像,要访问坐标 (x, y) 处的像素,可以通过以下方式计算索引: 

const index = (y * width + x) * 4;
const red = inputData[index];
const green = inputData[index + 1];
const blue = inputData[index + 2];
const alpha = inputData[index + 3];

 假设图像宽度为 2,要访问坐标 (1, 0) 处的像素(绿色)的颜色值:

const width = 2;
const x = 1;
const y = 0;
const index = (y * width + x) * 4;
const red = inputData[index];         // 0
const green = inputData[index + 1];   // 255
const blue = inputData[index + 2];    // 0
const alpha = inputData[index + 3];   // 255

了解了图像基本的存储规律,接下来我们来看具体计算函数 convolve

function convolve(context, kernel) {const canvas = context.canvas;const width = canvas.width;const height = canvas.height;// 假设 kernel 是一个归一化的卷积核矩阵,其大小为 size x sizeconst size = Math.sqrt(kernel.length);const half = Math.floor(size / 2);// 获取输入图像数据const inputData = context.getImageData(0, 0, width, height).data;// 创建一个新的 ImageData 对象用于输出图像数据const output = context.createImageData(width, height);const outputData = output.data;// 遍历每个像素for (let pixelY = 0; pixelY < height; ++pixelY) {const pixelsAbove = pixelY * width;for (let pixelX = 0; pixelX < width; ++pixelX) {let r = 0,g = 0,b = 0,a = 0;// 遍历卷积核for (let kernelY = 0; kernelY < size; ++kernelY) {for (let kernelX = 0; kernelX < size; ++kernelX) {let weight = kernel[kernelY * size + kernelX];const neighborY = Math.min(height - 1,Math.max(0, pixelY + kernelY - half));const neighborX = Math.min(width - 1,Math.max(0, pixelX + kernelX - half));const inputIndex = (neighborY * width + neighborX) * 4;// 累加加权后的像素值r += inputData[inputIndex] * weight;g += inputData[inputIndex + 1] * weight;b += inputData[inputIndex + 2] * weight;a += inputData[inputIndex + 3] * weight;}}const outputIndex = (pixelsAbove + pixelX) * 4;outputData[outputIndex] = r;outputData[outputIndex + 1] = g;outputData[outputIndex + 2] = b;outputData[outputIndex + 3] = kernel.normalized ? a : 255; // 如果卷积核是归一化的,则使用计算后的 alpha,否则设为 255}}// 将输出图像数据放回到画布上下文中context.putImageData(output, 0, 0);}

 代码很多,但主要是两个循环,一个是循环所有像素点,将每个像素点进行更改。一个是循环卷积核,拿到权重生成累加权重之后的rgb值

其中   let weight = kernel[kernelY * size + kernelX]; 就是获取卷积核的权重值

假设我们有一个 3x3 的卷积核,并希望获取其中元素的位置:

const kernel = [0, -1, 0,-1, 5, -1,0, -1, 0
];const size = 3; // 卷积核的边长// 假设我们要获取位置 (1, 1) 的权重值
const kernelX = 1;
const kernelY = 1;const index = kernelY * size + kernelX; // 计算一维索引
const weight = kernel[index]; // 获取权重值console.log(weight); // 输出:5

当进行卷积操作时,卷积核需要对每个像素及其周围的像素进行处理。在图像边缘处,卷积核会超出图像的边界,因此需要处理这些边界情况。neighborY 计算了在 pixelY 位置应用卷积核时相应的邻近像素的 y 坐标。 

const neighborY = Math.min(height - 1,Math.max(0, pixelY + kernelY - half)
);
const neighborX = Math.min(width - 1,Math.max(0, pixelX + kernelX - half)
);

 现实需求中,我们往往会碰到类似这种设计稿,地图上的地貌纹理相对突出,这时候,我们就可以加上滤镜效果来实现。

完整代码:

<template><div class="box"><h1>Image Filters</h1><div id="map" class="map"></div><select id="kernel" name="kernel"><option>none</option><option selected>sharpen</option><option value="sharpenless">sharpen less</option><option>blur</option><option>shadow</option><option>emboss</option><option value="edge">edge detect</option></select></div>
</template><script>
import Map from "ol/Map.js";
import View from "ol/View.js";
import XYZ from "ol/source/XYZ.js";
import { fromLonLat } from "ol/proj.js";
import { Tile as TileLayer, Vector as VectorLayer } from "ol/layer.js";
import { OGCMapTile, Vector as VectorSource } from "ol/source.js";
export default {name: "",components: {},data() {return {map: null,extentData: "",message: {name: "",color: "",},};},computed: {},created() {},mounted() {const imagery = new TileLayer({source: new OGCMapTile({url: "https://maps.gnosis.earth/ogcapi/collections/NaturalEarth:raster:HYP_HR_SR_OB_DR/map/tiles/WebMercatorQuad",crossOrigin: "",}),});const map = new Map({layers: [imagery],target: "map",view: new View({center: fromLonLat([-120, 50]),zoom: 6,}),});//卷积核const kernels = {none: [0, 0, 0, 0, 1, 0, 0, 0, 0], //无sharpen: [0, -1, 0, -1, 5, -1, 0, -1, 0], //锐化滤波器sharpenless: [0, -1, 0, -1, 10, -1, 0, -1, 0], //增强图像的边缘和细节,但比 sharpen 更强烈。blur: [1, 1, 1, 1, 1, 1, 1, 1, 1], //平滑滤波器,通过对邻域像素值求平均来模糊图像shadow: [1, 2, 1, 0, 1, 0, -1, -2, -1], //阴影滤波器emboss: [-2, 1, 0, -1, 1, 1, 0, 1, 2], //浮雕滤波器edge: [0, 1, 0, 1, -4, 1, 0, 1, 0], //边缘检测滤波器};function normalize(kernel) {// 获取卷积核的长度const len = kernel.length;// 创建一个与卷积核相同长度的新数组const normal = new Array(len);let i,sum = 0;// 计算卷积核中所有元素的总和for (i = 0; i < len; ++i) {sum += kernel[i];}// 如果总和小于等于0,设置sum为1并标记为未归一化if (sum <= 0) {normal.normalized = false;sum = 1;} else {// 如果总和大于0,标记为已归一化normal.normalized = true;}// 将卷积核中的每个元素除以总和,得到归一化后的值for (i = 0; i < len; ++i) {normal[i] = kernel[i] / sum;}// 返回归一化后的卷积核return normal;}const select = document.getElementById("kernel");let selectedKernel = normalize(kernels[select.value]);select.onchange = function () {selectedKernel = normalize(kernels[select.value]);console.log("selectedKernel", selectedKernel);map.render();};imagery.on("postrender", function (event) {convolve(event.context, selectedKernel);});function convolve(context, kernel) {const canvas = context.canvas;const width = canvas.width;const height = canvas.height;// 假设 kernel 是一个归一化的卷积核矩阵,其大小为 size x sizeconst size = Math.sqrt(kernel.length);const half = Math.floor(size / 2);// 获取输入图像数据const inputData = context.getImageData(0, 0, width, height).data;// 创建一个新的 ImageData 对象用于输出图像数据const output = context.createImageData(width, height);const outputData = output.data;// 遍历每个像素for (let pixelY = 0; pixelY < height; ++pixelY) {const pixelsAbove = pixelY * width;for (let pixelX = 0; pixelX < width; ++pixelX) {let r = 0,g = 0,b = 0,a = 0;// 遍历卷积核for (let kernelY = 0; kernelY < size; ++kernelY) {for (let kernelX = 0; kernelX < size; ++kernelX) {let weight = kernel[kernelY * size + kernelX];const neighborY = Math.min(height - 1,Math.max(0, pixelY + kernelY - half));const neighborX = Math.min(width - 1,Math.max(0, pixelX + kernelX - half));const inputIndex = (neighborY * width + neighborX) * 4;// 累加加权后的像素值r += inputData[inputIndex] * weight;g += inputData[inputIndex + 1] * weight;b += inputData[inputIndex + 2] * weight;a += inputData[inputIndex + 3] * weight;}}const outputIndex = (pixelsAbove + pixelX) * 4;outputData[outputIndex] = r;outputData[outputIndex + 1] = g;outputData[outputIndex + 2] = b;outputData[outputIndex + 3] = kernel.normalized ? a : 255; // 如果卷积核是归一化的,则使用计算后的 alpha,否则设为 255}}// 将输出图像数据放回到画布上下文中context.putImageData(output, 0, 0);}},methods: {},
};
</script><style lang="scss" scoped>
#map {width: 100%;height: 500px;
}
.box {height: 100%;
}
</style>

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/353443.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

macOS vscode常用快捷键

1、shiftoption上下箭头 复制当前行 2、commandd 选定多个相同的单词 先双击选定一个单词&#xff0c;然后按下commandd 依次选中要修改的单词&#xff0c;直接修改即可 3、全局替换某个单词 comandh 4、快速定位到某一行 controlg 5、选中某个区域 shiftoption&#xff0c;然…

Adobe Photoshop cc快速抠图与精致抠图方法

一、背景 Photoshop cc绝对是最好用的抠图and修图软件&#xff0c;但是即使最简单的抠图&#xff0c;每次用时都忘记怎么做&#xff0c;然后再去B站搜&#xff0c;非常费时&#xff0c;下面记录一下抠图过程&#xff0c;方便查阅。 一、Adobe Photoshop快速抠图 选择——主体…

web系统数据库敏感数据处理

一、前言 web系统数据库中保存的公民信息不允许明文存储&#xff0c;比如手机号&#xff0c;身份证号&#xff0c;收货地址等。 二、处理方式 数据库中密文存储&#xff0c;web通过注解的方式对数据加解密处理&#xff0c;下面是处理方法 1、编写接口 public interface E…

提取人脸——OpenCV

提取人脸 导入所需的库创建窗口显示原始图片显示检测到的人脸创建全局变量定义字体对象定义一个函数select_image定义了extract_faces函数设置按钮运行GUI主循环运行显示 导入所需的库 tkinter&#xff1a;用于创建图形用户界面。 filedialog&#xff1a;用于打开文件对话框。 …

【JS】上传文件显示文件的为空,显示的文件参数内容只有uid

上传的文件参数file里面只包含uid&#xff0c;没有其他信息 例子解决办法 例子 例如使用elment ui的el-upload组件上传文件&#xff0c;会导致上传的文件参数file里面只包含uid&#xff0c;没有其他信息&#xff0c;如图&#xff1a; 正确应为如下图&#xff1a; 解决办法 …

MySQL 基本语法讲解及示例(上)

第一节&#xff1a;MySQL的基本操作 1. 创建数据库 在 MySQL 中&#xff0c;创建数据库的步骤如下&#xff1a; 命令行操作 打开 MySQL 命令行客户端或连接到 MySQL 服务器。 输入以下命令创建一个数据库&#xff1a; CREATE DATABASE database_name;例如&#xff0c;创建一…

了解Nest.js

一直做前端开发&#xff0c;都会有成为全栈工程师的想法&#xff0c;而 Nest 就是一个很好的途径&#xff0c;它是 Node 最流行的企业级开发框架&#xff0c;提供了 IOC、AOP、微服务等架构特性。接下来就让我们一起来学习Nest.js Nest.js官网地址 一&#xff0c;了解Nest Cli …

第十二章:会话控制

会话控制 文章目录 会话控制一、介绍二、cookie2.1 cookie 是什么2.2 cookie 的特点2.3 cookie 的运行流程2.4 浏览器操作 cookie2.5 cookie 的代码操作&#xff08;1&#xff09;设置 cookie&#xff08;2&#xff09;读取 cookie&#xff08;3&#xff09;删除 cookie 三、se…

56.SAP MII开发的一个系统响应错误 Error code: ICMETIMEOUT

问题 一个SAP MII开发的项目&#xff0c;最近新增了一个功能&#xff0c;查询数据源量比较大&#xff0c;逻辑有点复杂&#xff0c;大约7-8分钟。发布到生产系统后&#xff0c;发生响应错误&#xff0c;返回 Error code: ICMETIMEOUT <!-- Error code: ICMETIMEOUT -->\r…

Petalinux由于网络原因产生的编译错误(2)--Fetcher failure:Unable to find file

1 Fetcher failure:Unable to find file 错误 如果编译工程遇到如下图所示的“Fetcher failure for URL”或相似错误 出现这种错误的原因是 Petalinux 在配置和编译的时候&#xff0c;需要联网下载一些文件&#xff0c;由于网 络原因这些文件不能正常下载&#xff0c;导致编译…

Vue 路由:一级路由,嵌套路由

1、安装路由插件,因为用的是vue2 所以路由版本要和vue2对应上&#xff0c;所有有3 yarn add vue-router3 2、在main.js里引入 import VueRouter from vue-router Vue.use(VueRouter) 3、新建文件夹 router,创建index.js 4、引入路由插件&#xff0c;并且暴露出来这个路由 5、在…

「TCP 重要机制」滑动窗口 粘包问题 异常情况处理

&#x1f387;个人主页&#xff1a;Ice_Sugar_7 &#x1f387;所属专栏&#xff1a;计网 &#x1f387;欢迎点赞收藏加关注哦&#xff01; 滑动窗口&粘包问题&异常情况处理 &#x1f349;滑动窗口&#x1f34c;流量控制&#x1f34c;拥塞控制&#x1f34c;延时应答&…

Docker overlay磁盘使用100%处理方法overlay 100%

一、问题描述 服务器上运行了几个docker容器,运行个一周就会出现overlay 100%的情况&#xff0c;经查找&#xff0c;是容器里生成了很多core.xxx的文件导致的。 二、解决方法 首先通过以下命令查看&#xff1a; df -h 可以看的overlay已经100%了&#xff0c;进入到/var/lib/d…

C++之std::type_identity

目录 1.简介 2.C20的std::type_identity 3.使用 type_identity 3.1.阻止参数推导 3.1.1.模板参数推导过程中的隐式类型转换 3.1.2.强制显式实例化 3.2.阻止推断指引 3.3.类型保持 3.4.满足一些稀奇古怪的语法 4.示例 5.总结 1.简介 std::type_identity 是 C17 引入的…

element-ui将组件默认语言改为中文

在main.js中加入以下代码即可 // 引入 Element Plus 及其样式 import ElementPlus from element-plus import element-plus/dist/index.css// 引入中文语言包 import zhCn from element-plus/es/locale/lang/zh-cn// 使用 Element Plus 并设置语言为中文 app.use(ElementPlus,…

RNN的变种们:GRULSTM双向RNN

上篇笔记记录到RNN的一个缺点&#xff1a;训练时会出现梯度消失&#xff0c;解决的办法是找到一个更优的计算单元。这里也有GRU和LSTM。 GRU&#xff08;Gated Recurrent Unit&#xff09;门控训练网络 什么是门控机制&#xff1f;就是对当前的输入进行一个筛选。门打开&…

从零开始写 Docker(十八)---容器网络实现(下):为容器插上”网线“

本文为从零开始写 Docker 系列第十八篇&#xff0c;利用 linux 下的 Veth、Bridge、iptables 等等相关技术&#xff0c;构建容器网络模型&#xff0c;为容器插上”网线“。 完整代码见&#xff1a;https://github.com/lixd/mydocker 欢迎 Star 推荐阅读以下文章对 docker 基本实…

私域引流宝PHP源码 以及搭建教程

私域引流宝PHP源码 以及搭建教程

LeetCode 算法:合并两个有序链表 c++

原题链接&#x1f517;&#xff1a;合并两个有序链表 难度&#xff1a;简单⭐️ 题目 将两个升序链表合并为一个新的 升序 链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。 示例 1&#xff1a; 输入&#xff1a;l1 [1,2,4], l2 [1,3,4] 输出&#xff1a;…

【Go语言】面向对象编程(二):通过组合实现类的继承和方法重写

通过组合实现类的继承和方法重写 要实现面向对象的编程&#xff0c;就必须实现面向对象编程的三大特性&#xff1a;封装、继承和多态。 1 封装 类的定义及其内部数据的定义可以看作是类的属性&#xff0c;基于类定义的函数方法则是类的成员方法。 2 继承 Go 语言中&#x…