数据结构与算法笔记:高级篇 - 搜索:如何用 A* 搜索算法实现游戏中的寻路功能?

概述

魔兽世界、仙剑奇侠传这类 MMRPG 游戏,不知道你玩过没有?在这些游戏中,有一个非常重要的功能,那就是任务角色自动寻路。当任务处于游戏地图中的某个位置时,我们用鼠标点击另外一个相对较远的位置,任务就会自动绕过障碍物走过去。玩过这么多游戏,不知道你是否思考过,这个功能是怎么实现的呢?


算法解析

实际上,这是一个非常典型的搜索问题。人物的起点就是他当下所在的位置,重点就是鼠标点击的位置。我们需要在地图中,找一条从起点到终点的路径。这条路径要绕过地图中所有障碍物,并且看起来要是一种非常聪明的走法。所谓 “聪明”,笼统地解释就是,走的路不能太绕。理论上讲,最短路径显然是最聪明的做法,是这个问题的最优解。

不过,在最优出行路线规划章节中,我们也讲过,如果图非常大,那 Dijkstra 最短路径算法的执行耗时会很多。在真是的软件开发中,我们面对的是超级大的地图和海量的寻路请求,算法的执行效率太低,这显然是无法接受的。

实际上,像出行路线规划、游戏寻路,这些真是软件开发中的问题,一般情况下,我们都不需要非得求最优解(也就是最短路径)。在权衡线路规划质量和执行效率的情况下,我们只需寻求一个次优解就足够了。那如何快速找出一条接近于最短路线的次优路线呢?

这个快速的路径规划算法,就是本章要学习的 A 算法*。实际上,A* 算法是对 Dijkstra 算法的优化和改造。如何将 Dijkstra 算法改造成 A* 算法 呢?为了更好地理解接下来要将的内容,建议你先温习一下前面章节的 Dijkstra 算法的实现原理。

Dijkstra 算法有点类似 BFS 算法,它每次找到跟起点最近的顶点,往外扩展。这种往外扩展的思路,其实有些盲目。为什么这么说呢?我举个例子来给你解释下。下面这个图对应一个真实的地图,每个顶点在地图中的位置,我们用一个二维坐标 (x,y) 来表示,其中,x 表示横坐标,y 表示纵坐标。

在这里插入图片描述
在 Dijkstra 算法的实现思路中,我们用一个优先级队列,来记录已经遍历到的顶点已经这个顶点与起始顶点的路径长度。顶点与起始顶点路径长度越小,就越先被从优先级队列中取出来扩展,从图中举的例子可以看出来,尽管我们找的是 s 到 t 的线路,但是最先被搜搜到的顶点依次是 1,2,3。通过肉眼来观察,这个搜索方向跟我们期望的路线方向(s 到 t 是从西向东)是反着的,路线搜索的方向明显 “跑偏了”。

之所以会跑偏,那是因为我们那是按照顶点与起点的路径长度的大小,来安排出兑顺序的。与顶点越近的顶点,就会越早出队列。我们并没有考虑到这个顶点到终点的距离,所以,在地图中,尽管 1,2,3 三个顶点离起始顶点最近,但是离终点却越来越远。

如果我们综合更多的因素,把这个顶点到终点可能还要走多远,也考虑进去,综合来判断哪个顶点该该先出对,那是不是就可以避免 “跑偏” 呢?

当我们遍历到某个顶点的时候,从起点到这个顶点的路径长度是确定的,我们记作 g(i) (i 表示顶点的编号)。但是从这个顶点到终点的路径长度,我们是未知的,虽然确切的值无法提前知道,但是我们可以用其他估计值来代替。

这里我们可以通过这个顶点跟终点之间的直线距离,也就是欧几里得距离,来近似地估计这个顶点跟终点的路径长度(注意:路径长度和直线距离是两个概念)。我们把这个距离记作 h(i) (i 表示顶点的编号),专业的叫法是启发函数 (heuristic function)。

因为欧几里得距离的计算公式,会涉及比较好使的开根号计算,所以,我们一般通过另外一个更加简单的距离计算公式,那就是曼哈顿距离(Manhattan distance)。曼哈顿距离是两点之间横纵坐标的距离之和。计算的过程只涉及加减法、符号位反转,所以比欧几里得距离更加高效。

    int hManhattan(Vertex v1, Vertex v2) {return Math.abs(v1.x - v2.x) + Math.abs(v1.y - v2.y);}

原来只是单纯地通过顶点与起点之间的路径长度 g(i),来判断谁先出队列,现在有了顶点到终点的路径长度估计值,我们通过两者之和 f(i)=g(i)+h(i),来判断哪个顶点先出队列。综合两部分,我们就能有效避免刚刚讲的 “跑偏”。这里 f(i) 的专业叫法是估价函数(evaluation function)。

从刚刚的描述,可以发现,A* 算法就是对 Dijkstra 算法的简单改造。实际上,代码实现方面,我们也只需要稍微改动几行代码,就能把 Dijkstra 算法的代码实现,改成 A* 算法的代码实现。

A* 算法的代码实现中,顶点 Vertex 的定义,跟 Dijkstra 算法中的定义,稍微有点儿区别,多了 x、y 坐标,以及刚刚提到的 f(i) 值。图 Grah 类的定义跟 Dijkstra 算法中的定义一样。

    private class Vertex {public int id; // 顶点编号public int dist; // 从起始顶点,到这个顶点的距离public int f; // 新增:f(i)=g(i)+h(i)public int x; // 新增:顶点在地图中的横坐标public int y; // 新增:顶点在地图中的纵坐标public Vertex(int id, int x, int y) {this.id = id;this.x = x;this.y = y;this.f = Integer.MAX_VALUE;this.dist = Integer.MAX_VALUE;}}// 新增一个成员变量,在构造函数中初始化private Vertex[] vertexs = new Vertex[this.v];// 新增一个方法,添加顶点的坐标public void addVertex(int id, int x, int y) {vertexs[id] = new Vertex(id, x, y);}

A* 算法的代码实现的主要逻辑是下面这段代码。它跟 Dijkstra 算法的代码实现,主要有 3 点区别:

  • 优先级队列构建的方式不同。A* 算法是根据 f 值(也就是刚刚讲到的 f(i)=g(i)+h(i)),来构建优先队列,而 Dijkstra 算法是根据 dist 值(也就是刚讲到的 g(i))来构建优先级队列。
  • A* 算法在更新顶点 dist 值的时候,会同步更新 f 值。
  • 循环结束的条件也不一样。Dijkstra 算法是在终点出队的时候才结束,A* 算法是一旦遍历到终点就结束。
    public void astra(int s, int t) { // 从顶点s到顶点t的路径int[] predecessor = new int[this.v]; // 用来还原最短路径// 根据vertex的f值构建小顶堆,而不是按照distPriorityQueue queue = new PriorityQueue(this.v);boolean[] inQueue = new boolean[this.v]; // 标记是否进入过队列vertexs[s].dist = 0;vertexs[s].f = 0;queue.add(vertexs[s]);inQueue[s] = true;while (!queue.isEmpty()) {Vertex minVertex = queue.poll(); // 获取对顶元素并删除for (int i = 0; i < adj[minVertex.id].size(); i++) {Edge e = adj[minVertex.id].get(i); // 取出一条minVertex相连的边Vertex nextVertex = vertexs[e.tid]; // minVertex->nextVertexif (minVertex.dist + e.w < nextVertex.dist) { // 更新next的dist,fnextVertex.dist = minVertex.dist + e.w;nextVertex.f = nextVertex.dist + hManhattan(minVertex, vertexs[t]);predecessor[nextVertex.id] = minVertex.id;if (inQueue[nextVertex.id] == true) {queue.update(nextVertex); // 更新队列中的dist} else {queue.add(nextVertex);inQueue[nextVertex.id] = true;}}if (nextVertex.id == t) {queue.clear();break;}}}// 输出最短路径System.out.print(s);print(s, t, predecessor);}

完整的 Graph 代码实现如下所示:

public class Graph {private int v; // 顶点个数private LinkedList<Edge> adj[]; // 邻接表private Vertex[] vertexs; // 新增一个成员变量,在构造函数中初始化public Graph(int v) {this.v = v;this.vertexs = new Vertex[this.v];adj = new LinkedList[v];for (int i = 0; i < adj.length; i++) {adj[i] = new LinkedList<>();}}public void addEdge(int s, int t, int w) { // 添加一条边adj[s].add(new Edge(s, t, w));}// 新增一个方法,添加顶点的坐标public void addVertex(int id, int x, int y) {vertexs[id] = new Vertex(id, x, y);}int hManhattan(Vertex v1, Vertex v2) {return Math.abs(v1.x - v2.x) + Math.abs(v1.y - v2.y);}public void astra(int s, int t) { // 从顶点s到顶点t的路径int[] predecessor = new int[this.v]; // 用来还原最短路径// 根据vertex的f值构建小顶堆,而不是按照distPriorityQueue queue = new PriorityQueue(this.v);boolean[] inQueue = new boolean[this.v]; // 标记是否进入过队列vertexs[s].dist = 0;vertexs[s].f = 0;queue.add(vertexs[s]);inQueue[s] = true;while (!queue.isEmpty()) {Vertex minVertex = queue.poll(); // 获取对顶元素并删除for (int i = 0; i < adj[minVertex.id].size(); i++) {Edge e = adj[minVertex.id].get(i); // 取出一条minVertex相连的边Vertex nextVertex = vertexs[e.tid]; // minVertex->nextVertexif (minVertex.dist + e.w < nextVertex.dist) { // 更新next的dist,fnextVertex.dist = minVertex.dist + e.w;nextVertex.f = nextVertex.dist + hManhattan(minVertex, vertexs[t]);predecessor[nextVertex.id] = minVertex.id;if (inQueue[nextVertex.id] == true) {queue.update(nextVertex); // 更新队列中的dist} else {queue.add(nextVertex);inQueue[nextVertex.id] = true;}}if (nextVertex.id == t) {queue.clear();break;}}}// 输出最短路径System.out.print(s);print(s, t, predecessor);}private void print(int s, int t, int[] predecessor) {if (s == t) return;print(s, predecessor[s], predecessor);System.out.print("->" + t);}// 因为Java提供的优先级队列,没有暴露更新数据的接口,所以,需要重新实现一个private class PriorityQueue { //根据Vertex.f构建小顶堆private Vertex[] nodes;private int count;public PriorityQueue(int v) {this.nodes = new Vertex[v];this.count = v;}public Vertex poll() { /**留给你去实现*/ }public void add(Vertex vertex) { /**留给你去实现*/ }// 更新节点的值,并且从下往上堆化,更新符合堆顶定义。时间复杂度O(logn)public void update(Vertex vertex) { /**留给你去实现*/ }public boolean isEmpty() { /**留给你去实现*/ }public void clear() {for (int i = 0; i < count; i++) {nodes[i] = null;}count = 0;}}private class Vertex {public int id; // 顶点编号public int dist; // 从起始顶点,到这个顶点的距离public int f; // 新增:f(i)=g(i)+h(i)public int x; // 新增:顶点在地图中的横坐标public int y; // 新增:顶点在地图中的纵坐标public Vertex(int id, int x, int y) {this.id = id;this.x = x;this.y = y;this.f = Integer.MAX_VALUE;this.dist = Integer.MAX_VALUE;}}private class Edge {public int sid; // 边的起始顶点编号public int tid; // 边的终止顶点编号public int w; // 权重public Edge(int sid, int tid, int w) {this.sid = sid;this.tid = tid;this.w= w;}}
}

尽管 A* 算法可以更加快速地找到从起点到终点的路线,但是它并不能像 Dijkstra 算法那样,找到最短路径。这是为什么呢?

要找出起点到终点的最短路径,最简单的方法是,通过回溯穷举所有从 s 到达 t 的不同路径,然后对比找出最短的那个。不过很显然,回溯算法的执行效率非常低,是指数级的。

在这里插入图片描述

Dijkstra 算法在此基础上,利用动态规划的思想,对回溯搜索进行了剪枝,只保留起点到某个顶点的最短距离,继续往外扩展搜搜。动态规划相较于回溯搜索,只是换了一个实现思路,但它实际上也考察了所有从起点到终点的路线,所以才能得到最优解。

在这里插入图片描述

A* 算法之所以不能像 Dijkstra 算法那样,找到最短路径,只要原因是两者的 while 循环结束条件不一样。刚刚讲过,Dijkstra 算法是在终点出队的时候才结束,A* 算法是一旦遍历到终点就结束。对于 Dijkstra 算法来说,当终点出队列的时候,终点的 dist 值是优先级队列中所有顶点的最小值,即便再运行下去,终点的 dist 值也不会再被更新了。对于 A* 算法来说,一旦遍历到终点,我们就结束 while 循环,这个时候,终点的 dist 值未必是最小值。

A* 算法利用贪心算法的思路,每次都找 f 值最小的顶点出队,一旦搜索到终点就不在继续考察其他顶点和路线了。所以,它并没有考察所有的路线,也就不可能找出最短路径了。

搞懂了 A* 算法,我们再来看下,如何借助A* 算法解决今天的游戏寻路问题?

要利用 A* 算法解决这个问题,我们只需把地图,抽象成图就可以了。不过,游戏中的地图跟我们平常将的地图是不一样的。因为游戏中的地图并不像我们现实生活中那样,存在规划非常清晰的道路,更多的是宽阔的视野、草坪等。所以,我们没法把岔路口抽象成定点,把道路抽象成边。

实际上,我们可以换一种抽象思路,把整个地图分割成一个一个的小方块。在某一个方块上的任务,只能往上下左右四个方向的方块上移动。我们可以把每个方块看做一个顶点。两个方块相邻,我们就在它们之间,连两条有向边,并且边的权值都是 1。所以,这个问题就转化成了,在一个有向有全图中,找到某个顶点到另一个顶点的路径问题。将地图抽象成边权值为 1 的有向图之后,我们就可以套用 A* 算法,来实现游戏中任务的自动寻路功能了。

总结

本章讲的 A* 算法属于一种启发式搜索算法(Heuristically Search Algorithm)。实际上,启发式搜索算法并不仅仅只有 A* 算法,还有很多其他算法,比如 IDA* 算法、蚁群算法、遗传算法、模拟退火算法等。如果感兴趣,可以自行研究下。

启发式搜索算法利用估价函数,避免 “跑偏”,贪心地朝着最有可能到达终点的方向前进。这种算法炸出的路线,并不是最短路线。但是,实际的软件开发中的路线规划问题,我们往往并不需要非得找最短距离。所以,鉴于启发式搜索算法能很好地平衡路线质量和执行效率,它在实际的软件开发中的应用更加广泛。实际上,最短路径章节 中讲到的地图 APP 中的出行路线规划问题,也可以利用启发式搜索算法来实现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/366684.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

简单分享 for循环,从基础到高级

1. 基础篇&#xff1a;Hello, For Loop! 想象一下&#xff0c;你想给班上的每位同学发送“Hello!”&#xff0c;怎么办&#xff1f;那就是for循环啦&#xff0c; eg&#xff1a;首先有个名字的列表&#xff0c;for循环取出&#xff0c;分别打印 names ["Alice", …

LabVIEW与PLC通讯方式及比较

LabVIEW与PLC之间的通讯方式多样&#xff0c;包括使用MODBUS协议、OPC&#xff08;OLE for Process Control&#xff09;、Ethernet/IP以及串口通讯等。这些通讯方式各有特点&#xff0c;选择合适的通讯方式可以提高系统的效率和稳定性。以下将详细介绍每种通讯方式的特点、优点…

Ubuntu24.04 Isaacgym的安装

教程1 教程2 教程3 1.下载压缩包 link 2. 解压 tar -xvf IsaacGym_Preview_4_Package.tar.gz3. 从源码安装 Ubuntu24.04还需首先进入虚拟环境 python -m venv myenv # 创建虚拟环境&#xff0c;已有可跳过 source myenv/bin/activate # 激活虚拟环境python编译 cd isaa…

Redis---保证主从节点一致性问题 +与数据库数据保持一致性问题

保证主从节点一致性问题 Redis的同步方式默认是异步的&#xff0c;这种异步的同步方式导致了主从之间的数据存在一定的延迟&#xff0c;因此Redis默认是弱一致性的。 解决&#xff1a; 1.使用Redisson这样的工具&#xff0c;它提供了分布式锁的实现&#xff0c;确保在分布式环…

React 中 useEffect

React 中 useEffect 是副作用函数&#xff0c;副作用函数通常是处理外围系统交互的逻辑。那么 useEffect 是怎处理的呢&#xff1f;React 组件都是纯函数&#xff0c;需要将副作用的逻辑通过副作用函数抽离出去&#xff0c;也就是副作用函数是不影响函数组件的返回值的。例如&a…

Codeforces Round 954 (Div. 3)(A~E)

目录 A. X Axis B. Matrix Stabilization C. Update Queries D. Mathematical Problem A. X Axis Problem - A - Codeforces 直接找到第二大的数&#xff0c;答案就是这个数与其他两个数的差值的和。 void solve() {vector<ll>a;for (int i 1; i < 3; i){int x;…

【实战】EasyExcel实现百万级数据导入导出

文章目录 前言技术积累实战演示实现思路模拟代码测试结果 前言 最近接到一个百万级excel数据导入导出的需求&#xff0c;大概就是我们在进行公众号API群发的时候&#xff0c;需要支持500w以上的openid进行群发&#xff0c;并且可以提供发送openid数据的导出功能。可能有的同学…

002-基于Sklearn的机器学习入门:基本概念

本节将继续介绍与机器学习有关的一些基本概念&#xff0c;包括机器学习的分类&#xff0c;性能指标等。同样&#xff0c;如果你对本节内容很熟悉&#xff0c;可直接跳过。 2.1 机器学习概述 2.1.1 什么是机器学习 常见的监督学习方法 2.1.2 机器学习的分类 机器学习一般包括监…

C++初学者指南-3.自定义类型(第一部分)-析构函数

C初学者指南-3.自定义类型(第一部分)-析构函数 文章目录 C初学者指南-3.自定义类型(第一部分)-析构函数特殊的成员函数用户定义的构造函数和析构函数RAII示例&#xff1a;资源处理示例&#xff1a;RAII记录零规则 特殊的成员函数 T::T()默认构造函数当创建新的 T 对象时运行。…

配置WLAN 示例

规格 仅AR129CVW、AR129CGVW-L、AR109W、AR109GW-L、AR161W、AR161EW、AR161FGW-L、AR161FW、AR169FVW、AR169JFVW-4B4S、AR169JFVW-2S、AR169EGW-L、AR169EW、AR169FGW-L、AR169W-P-M9、AR1220EVW和AR301W支持WLAN-FAT AP功能。 组网需求 如图1所示&#xff0c;企业使用WLAN…

C++(第一天-----命名空间和引用)

一、C/C的区别 1、与C相比   c语言面向过程&#xff0c;c面向对象。   c能够对函数进行重载&#xff0c;可使同名的函数功能变得更加强大。   c引入了名字空间&#xff0c;可以使定义的变量名更多。   c可以使用引用传参&#xff0c;引用传参比起指针传参更加快&#…

基于YOLOv9+pyside的安检仪x光危险物物品检测(有ui)

安全检查在公共场所确保人身安全的关键环节&#xff0c;不可或缺。X光安检机作为必要工具&#xff0c;在此过程中发挥着重要作用。然而&#xff0c;其依赖人工监控和判断成像的特性限制了其应用效能。本文以此为出发点&#xff0c;探索了基于Torch框架的YOLO算法在安检X光图像中…

Xcode安装Simulator失败问题解决方法

Xcode安装Simulator_Runtime失败&#xff0c;安装包离线安装保姆级教程 Xcode更新之后有时候会提示要安装模拟器运行时环境&#xff0c;但是用Xcode更新会因为网络原因&#xff0c;我觉得基本上就是因为苹果服务器的连接不稳定导致的&#xff0c;更可气的是不支持断点续…

【论文阅读】--Popup-Plots: Warping Temporal Data Visualization

弹出图&#xff1a;扭曲时态数据可视化 摘要1 引言2 相关工作3 弹出图3.1 椭球模型3.1.1 水平轨迹3.1.2 垂直轨迹3.1.3 组合轨迹 3.2 视觉映射与交互 4 实施5 结果6 评估7 讨论8 结论和未来工作致谢参考文献 期刊: IEEE Trans. Vis. Comput. Graph.&#xff08;发表日期: 2019&…

DICOM灰度图像、彩色图像的窗宽、窗位与像素的最大最小值的换算关系?

图像可以调整窗宽、窗位 dicom图像中灰度图像可以调整窗宽、窗位&#xff0c;RGB图像调整亮度或对比度&#xff1f;_灰度 图 调节窗宽-CSDN博客 窗宽、窗位与像素的最大最小值的换算关系? 换算公式 max-minWindowWidth; (maxmin)/2WindowCenter; 详细解释 窗宽&#xff0…

视频太大怎么压缩变小?6款视频压缩软件免费版分享

视频太大怎么压缩得又小又清晰呢&#xff1f;无论是视频文件传输、视频文件存储&#xff0c;还是进行自媒体视频上传&#xff0c;都对视频文件的大小有一定的限制。高质量的视频文件往往伴随着文件占据大量存储空间&#xff0c;导致文件传输速度变慢。今天教大家6种视频压缩软件…

试用笔记之-汇通来电显示软件

首先汇通来电显示软件下载 http://www.htsoft.com.cn/download/httelephone.rar

IP白名单及其作用解析

在网络安全领域&#xff0c;IP白名单是一项至关重要的策略&#xff0c;它允许特定的IP地址或地址范围访问网络资源&#xff0c;从而确保只有受信任的终端能够连接。下面&#xff0c;我们将深入探讨IP白名单的定义、作用以及实施时的关键考虑因素。 一、IP白名单的定义 IP白名单…

深度学习21-30

1.池化层作用&#xff08;筛选、过滤、压缩&#xff09; h和w变为原来的1/2&#xff0c;64是特征图个数保持不变。 每个位置把最大的数字取出来 用滑动窗口把最大的数值拿出来&#xff0c;把44变成22 2.卷积神经网络 &#xff08;1&#xff09;conv&#xff1a;卷积进行特征…

stm32学习笔记---USART串口协议(理论部分)

目录 通信 通信的目的 通信协议 STM32的通信协议 各种协议的通信引脚介绍 通信空间和时间 时钟特性 电平特性 设备特性 串口通信 硬件电路 电平标准 串口参数及时序 时序 串口的参数 串口通信的实际波形 声明&#xff1a;本专栏是本人跟着B站江科大的视频的学习…