0基础学会在亚马逊云科技AWS上搭建生成式AI云原生Serverless问答QA机器人(含代码和步骤)

小李哥今天带大家继续学习在国际主流云计算平台亚马逊云科技AWS上开发生成式AI软件应用方案。上一篇文章我们为大家介绍了,如何在亚马逊云科技上利用Amazon SageMaker搭建、部署和测试开源模型Llama 7B。下面我将会带大家探索如何搭建高扩展性、高可用的完全托管云原生基础设施,让终端用户通过云平台访问到部署的开源AI大语言模型。下面就是小李哥做的一个简单Meta Llama 7B问答聊天机器人界面。

这是小李哥的AWS生成式AI云计算架构介绍第二篇文章,在这个系列里我会带大家介绍所有的方案技术讲解、具体的操作细节和分享项目的代码,目的就是为了帮助大家0基础即可上手国际最热门的云计算平台亚马逊云科技AWS。也欢迎大家关注小李哥,以免错过本系列中其他的优质GenAI解决方案。

首先我们看架构图:

方案架构图:

涉及到的亚马逊云科技云计算服务:

本云原生方案包含了多个热门的云原生、全托管的亚马逊云科技服务,涉及网络、开发、计算和存储。全部的服务列表如下:

1. 网络CDN加速:Amazon CloudFront

Amazon CloudFront 是一种内容分发网络 (CDN) 服务,能够快速将数据、视频、应用程序和API安全地传递给全球客户。其优势在于通过分布在全球的边缘位置提供低延迟和高传输速度,同时具备与AWS服务的无缝集成,确保安全和高性能的内容交付。

2. 前端页面托管服务器: Amazon S3

Amazon S3(Simple Storage Service)是一个高度可扩展的对象存储服务,适用于存储和检索任何数量的数据。其优势在于提供11个9的数据持久性和冗余存储,确保前端页面的高可用性和快速访问,并且支持静态网站托管,简化了网站的部署和管理。

3. API对外网关节点:Amazon API Gateway

Amazon API Gateway 是一种完全托管的服务,使开发者能够轻松创建、发布、维护、监控和保护API。其优势在于可以处理成千上万的并发API调用,确保API的高可用性和低延迟,并且与AWS Lambda无缝集成,实现真正的无服务器架构。

4. 云原生Serverless代码托管服务: AWS Lambda

AWS Lambda 是一种无服务器计算服务,允许用户运行代码而无需预置或管理服务器。其优势在于自动扩展并仅在代码运行时计费,降低了运营成本。Lambda与其他AWS服务深度集成,简化了事件驱动架构的实现,提升了应用程序的灵活性和响应能力。

搭建云原生Serverless应用的具体步骤:

1. 首先我们打开AWS控制台,进入Lambda,点击我们的Lambda函数“endpoint_test_function”

2. 接着我们进入Lambda配置页面,配置Lambda函数

3. 点击“Edit”修改Lambda函数的基础配置

4.修改Timeout时间到1分钟。Lambda的timeout配置是函数处理请求的超时时间限额,Lamda可配置的最长超时时间为15分钟,默认时间是3秒,我们需要根据我们的代码运行时间进行对应修改。

5. 接下来,我们为lamda函数中的代码配置环境变量,点击“Edit”

6. 我们将前一篇文章中,最后一步获取的AI大语言模型API节点URL复制到Value部分。

7.接下来我们进入Lambda中查看调用AI大语言模型的Python代码。小李哥将代码分享给大家,方便大家动手实践。

# Import necessary libraries
import json
import boto3
import os
import re
import logging# Set up logging
logger = logging.getLogger()
logger.setLevel(logging.INFO)# Create a SageMaker client
sagemaker_client = boto3.client("sagemaker-runtime")# Define Lambda function
def lambda_handler(event, context):# Log the incoming event in JSON formatlogger.info('Event: %s', json.dumps(event))# Clean the body of the event: remove excess spaces and newline characterscleaned_body = re.sub(r'\s+', ' ', event['body']).replace('\n', '')# Log the cleaned bodylogger.info('Cleaned body: %s', cleaned_body)# Invoke the SageMaker endpoint with the cleaned body as payload and content type as JSONresponse = sagemaker_client.invoke_endpoint(EndpointName=os.environ["ENDPOINT_NAME"], ContentType="application/json", Body=cleaned_body)# Load the response body and decode itresult = json.loads(response["Body"].read().decode())# Return the result with status code 200 and the necessary headersreturn {'statusCode': 200,'headers': {'Access-Control-Allow-Headers': 'Content-Type','Access-Control-Allow-Origin': '*','Access-Control-Allow-Methods': 'OPTIONS,POST'},'body': json.dumps(result)}

代码解释:

第26行到第34行之间的代码

这段代码使用请求体调用SageMaker端点,然后保存响应。

第33行到第45行之间的代码

这段代码解码接收到的响应,并以结构化的JSON格式返回。

提供了状态码200以及必要的头信息(主要用于CORS)。

8. 接下来我们进入S3存储桶查看前端代码。

前端代码如下:

<!DOCTYPE html>
<html>
<head><title>Introduction to Generative AI</title><style>body {font-family: Amazon Ember, sans-serif;margin: 0;padding: 0;background: #f4f4f4;}.container {width: 80%;margin: auto;overflow: hidden;}#apiForm, #response {background: #fff;margin: 20px 0;padding: 20px;border: 1px solid #ddd;border-radius: 5px;}#apiForm label, #response label {display: block;margin-bottom: 5px;}#apiForm input[type="text"], #apiForm textarea, #response textarea {width: 100%;padding: 10px;margin-bottom: 20px;border-radius: 5px;border: 1px solid #ddd;box-sizing: border-box;}#apiForm button {padding: 10px 20px;background: #009578;color: #fff;border: none;border-radius: 5px;cursor: pointer;}h2, h5 {text-align: center;}</style>
</head>
<body><div class="container"><h2>Introduction to Generative AI</h2><div id="apiForm"><label for="apiGatewayUrl">API Gateway URL:</label><input type="text" id="apiGatewayUrl"><label for="content">Prompt:</label><textarea id="content" rows="10"></textarea><button onclick="callApi()">Generate</button></div><div id="response"><label for="output">Output:</label><textarea id="output" rows="10" readonly></textarea></div><h5><i>Please note: As with all AI-powered applications, outputs should be reviewed for accuracy and appropriateness.</i></h5></div><script>function callApi() {var apiGatewayUrl = document.getElementById('apiGatewayUrl').value;var content = document.getElementById('content').value;fetch(apiGatewayUrl, {method: 'POST',headers: {'Content-Type': 'application/json'},body: JSON.stringify({ inputs: content, parameters: { 'max_new_tokens': 400} })}).then(response => {if (!response.ok) {throw new Error(`HTTP error! status: ${response.status}`);}return response.json();}).then(data => {if(data && data[0] && data[0].generated_text){document.getElementById('output').value = data[0].generated_text;} else {throw new Error('Response is not in the expected format');}}).catch((error) => {console.error('Error:', error);alert('An error occurred: ' + error.message);});}</script>
</body>
</html>

9. 下面我们在AWS CDN Cloudfront中获取问答机器人UI的URL

10. 将URL复制到浏览器中,打开后出现问答机器人的UI。这里需要我们获取一个API Gateway的URL。

11. 我们进入到API Gateway中,获取Invoke URL

12. 最后如下图所示,填入Invoke URL和大家想问的问题,就可以得到Llama 7B的模型回复了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/374120.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

初次用bable遍历vue项目下的中文

利用 babel 找到 AST 中的中文 // vite-plugin-babel-transform.js const parser require(babel/parser) const traverse require(babel/traverse).default // const types require(babel/types) // const generate require(babel/generator).default const fs require(f…

nginx的正向代理和反向代理

nginx的正向代理和反向代理 正向代理以及缓存配置&#xff1a; 代理&#xff1a;客户端不再是直接访问服务端&#xff0c;通过代理服务器访问服务端 正向代理&#xff1a;面向客户端&#xff0c;我们通过代理服务器的IP地址访问目标服务端。 服务端只知道代理服务器的地址&am…

公司内部配置GitLab,通过SSH密钥来实现免密clone、push等操作

公司内部配置GitLab&#xff0c;通过SSH密钥来实现免密clone、push等操作。以下是配置SSH密钥以实现免密更新的步骤&#xff1a; 1.生成SSH密钥 在本地计算机上打开终端或命令提示符。输入以下命令以生成一个新的SSH密钥&#xff1a;ssh-keygen -t rsa -b 4096 -C "your…

《C++设计模式》状态模式

文章目录 一、前言二、实现一、UML类图二、实现 一、前言 状态模式理解最基本上的我觉得应该也是够用了&#xff0c;实际用的话&#xff0c;也应该用的是Boost.MSM状态机。 相关代码可以在这里&#xff0c;如有帮助给个star&#xff01;AidenYuanDev/design_patterns_in_mode…

2970.力扣每日一题7/10 Java(暴力枚举)

博客主页&#xff1a;音符犹如代码系列专栏&#xff1a;算法练习关注博主&#xff0c;后期持续更新系列文章如果有错误感谢请大家批评指出&#xff0c;及时修改感谢大家点赞&#x1f44d;收藏⭐评论✍ 目录 解题思路 解题方法 时间复杂度 空间复杂度 Code 解题思路 incre…

Elastic Stack--15--聚合查询(SUM、MAX、MIN、AVG)案例

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 ES的聚合查询(SUM、MAX、MIN、AVG)1.求和查询2.求平均值3.最大最小值查询4.唯一值查询 (类似于sql中的distinct 去重)5.stats聚合 ES的聚合查询(SUM、MAX、MIN、AVG…

从零开始实现大语言模型(三):Token Embedding与位置编码

1. 前言 Embedding是深度学习领域一种常用的类别特征数值化方法。在自然语言处理领域&#xff0c;Embedding用于将对自然语言文本做tokenization后得到的tokens映射成实数域上的向量。 本文介绍Embedding的基本原理&#xff0c;将训练大语言模型文本数据对应的tokens转换成Em…

[leetcode]kth-smallest-element-in-a-sorted-matrix 有序矩阵中第k小元素

. - 力扣&#xff08;LeetCode&#xff09; class Solution { public:bool check(vector<vector<int>>& matrix, int mid, int k, int n) {int i n - 1;int j 0;int num 0;while (i > 0 && j < n) {if (matrix[i][j] < mid) {num i 1;j;…

【全面介绍语言模型的原理,实战和评估】

🎥博主:程序员不想YY啊 💫CSDN优质创作者,CSDN实力新星,CSDN博客专家 🤗点赞🎈收藏⭐再看💫养成习惯 ✨希望本文对您有所裨益,如有不足之处,欢迎在评论区提出指正,让我们共同学习、交流进步! 🥂语言模型的原理 🥂语言模型基于统计和机器学习的原理,目标…

IoC源码分析——singleton bean创建与循环依赖

文章目录 概要主流程bean的创建循环依赖 概要 容器初始化时&#xff0c;会创建单例bean&#xff0c;本文主要关注单例bean是如何创建的&#xff0c;并说明源码中是如何解决循环依赖的 代码入口 Testpublic void testIoC() {// ApplicationContext是容器的高级接口&#xff0c…

MACOS查看硬盘读写量

一、安装Homebrew 按照提示进行安装 /bin/zsh -c "$(curl -fsSL https://gitee.com/cunkai/HomebrewCN/raw/master/Homebrew.sh)"二、安装smartmontools brew install smartmontools三、查看硬盘读写量等信息 sudo smartctl -a /dev/disk0

韦尔股份:深蹲起跳?

利润大增7倍&#xff0c;是反转信号还是回光返照&#xff1f; 今天我们聊聊光学半导体龙头——韦尔股份。 上周末&#xff0c;韦尔股份发布半年业绩预告&#xff0c;预计上半年净利润13至14亿&#xff0c;同比增幅高达 754%至 819%。 然而&#xff0c;回首 2023 年它的净利仅 …

【python】PyQt5可视化开发,鼠标键盘实现联动界面交互逻辑与应用实战

✨✨ 欢迎大家来到景天科技苑✨✨ &#x1f388;&#x1f388; 养成好习惯&#xff0c;先赞后看哦~&#x1f388;&#x1f388; &#x1f3c6; 作者简介&#xff1a;景天科技苑 &#x1f3c6;《头衔》&#xff1a;大厂架构师&#xff0c;华为云开发者社区专家博主&#xff0c;…

Python | Leetcode Python题解之第227题基本计算器II

题目&#xff1a; 题解&#xff1a; class Solution:def calculate(self, s: str) -> int:n len(s)stack []preSign num 0for i in range(n):if s[i] ! and s[i].isdigit():num num * 10 ord(s[i]) - ord(0)if i n - 1 or s[i] in -*/:if preSign :stack.append(…

Unity到底有无collider可视化,方便调试子弹,ACT,做Demo等

参照日本程序员的代码,改了一些,算是支持MeshCollider 好像确实就是日本《博客》比较多这类,可视化的调试资料 UnityでデバッグをするときColliderを可視化したいことってありますよね。 コライダーを見える化するには Physics Debuggerを使う可視化スクリプトを使うの2通り…

快速入门,springboot知识点汇总

学习 springboot 应该像学习一门编程语言一样&#xff0c;首先要熟练掌握常用的知识&#xff0c;而对于不常用的内容可以简单了解一下。先对整个框架和语言有一个大致的轮廓&#xff0c;然后再逐步补充细节。 前序: Spring Boot 通过简化配置和提供开箱即用的特性&#xff0c…

Dart笔记:Isolate及其通信机制

Dart笔记 多隔离及其通信机制 - 文章信息 - Author: 李俊才 (jcLee95) Visit me at CSDN: https://jclee95.blog.csdn.netMy WebSite&#xff1a;http://thispage.tech/Email: 291148484163.com. Shenzhen ChinaAddress of this article:https://blog.csdn.net/qq_28550263/a…

阿里云通义千问开源两款语音基座模型分别是SenseVoice和CosyVoice

阿里巴巴近期发布了开源语音大模型项目FunAudioLLM&#xff0c;该项目包含了两个核心模型&#xff1a;SenseVoice和CosyVoice。可以精准多语言识别并且进行语音克隆。 SenseVoice&#xff1a;精准多语言识别与情感辨识 SenseVoice主要致力于高精度多语言语音识别、情感辨识和…

《算法笔记》总结No.6——贪心

一.简单贪心 贪心法是求解一类最优化问题的方法&#xff0c;它总是考虑在当前状态下局部最优(或较优)之后&#xff0c;来使全局的结果达到最优(或较优)的策略。显然&#xff0c;如果采取较优而非最优的策略(最优策略可能不存在或是不易想到)&#xff0c;得到的全局结果也无法是…

webGL可用的14种3D文件格式,但要具体问题具体分析。

hello&#xff0c;我威斯数据&#xff0c;你在网上看到的各种炫酷的3d交互效果&#xff0c;背后都必须有三维文件支撑&#xff0c;就好比你网页的时候&#xff0c;得有设计稿源文件一样。WebGL是一种基于OpenGL ES 2.0标准的3D图形库&#xff0c;可以在网页上实现硬件加速的3D图…