c++入门基础篇(上)

目录

前言:

 1.c++的第一个程序

2.命名空间 

2.1 namespace的定义

2.2 命名空间使用

3.c++输入&输出

4.缺省参数 

5.函数重载 


前言:

  我们在之前学完了c语言的大部分语法知识,是不是意味着我们可以马上从事开发呢?其实行业中的绝大部分岗位都用不到c语言,那我们为什么要学c语言呢。c语言虽然和我们日常开发没有很大的关系,但是学习c语言可以为我们学习其他编程语言打下坚实的基础,拓宽我们的编程思维,而在考研中,许多学校也要求学习c语言,数据结构也大多是由c语言实现的,所以学完c语言虽然无法让我们马上从事开发行业,但是可以让我们获得诸多好处,让学完c语言的我们,学习可以从事开发工作的编程语言——c++,取得事半功倍的效果。

 1.c++的第一个程序

 C++兼容C语⾔绝⼤多数的语法,所以C语⾔实现的hello world依旧可以运⾏,C++中需要把定义⽂件 代码后缀改为.cpp,vs编译器看到是.cpp就会调⽤C++编译器编译,linux下要⽤g++编译,不再是gcc:

// test.cpp
#include<stdio.h>
int main()
{printf("hello world\n");return 0;
}

当然C++有⼀套⾃⼰的输⼊输出,严格说C++版本的hello world应该是这样写的: 

// test.cpp
// 这⾥的std cout等我们都看不懂,没关系,下⾯我们会依次讲解
#include<iostream>
using namespace std;
int main()
{cout << "hello world\n" << endl;return 0;
}

运行这段代码:

熟悉的hello world就被我们使用c++语言实现了。 

2.命名空间 

   在C/C++中,变量、函数和后⾯要学到的类都是⼤量存在的,这些变量、函数和类的名称将都存在于全 局作⽤域中,可能会导致很多冲突。使⽤命名空间的⽬的是对标识符的名称进⾏本地化,以避免命名 冲突或名字污染,namespace关键字的出现就是针对这种问题的。

c语⾔项⽬类似下⾯程序这样的命名冲突是普遍存在的问题,C++引⼊namespace就是为了更好的解决这样的问题

我们来看这样一段代码:

#include <stdio.h> 
#include <stdio.h>
int rand = 10;
int main()
{printf("%d\n", rand);return 0;
}

如果看不懂,试着运行一下:

可以看到此时代码还可以正常运行,但是如果我们运行下面这段代码:

#include <stdio.h> 
#include <stdio.h>
#include <stdlib.h>
int rand = 10;
int main()
{// 编译报错:error C2365: “rand”: 重定义;以前的定义是“函数”printf("%d\n", rand);return 0;
}

看一下运行结果:

当我们加上stdlib头文件时,程序却显示运行失败,而这就是典型的命名冲突问题,stdlib库中存在rand函数,如果我们不包含这个头文件,那么它在程序中就是一个普通的变量名,当我们包含了这个头文件之后,rand就变成了库函数名,而我们使用一个库函数的函数名来作为一个变量名,程序当然会运行失败啦。

2.1 namespace的定义

 (1)定义命名空间,需要使⽤到namespace关键字,后⾯跟命名空间的名字,然后接⼀对{}即可,{}中 即为命名空间的成员。命名空间中可以定义变量/函数/类型等

namespace a
{int i = 20;//定义变量int add(int x, int y){return x + y;}          //定义函数
}

(2)namespace本质是定义出⼀个域,这个域跟全局域各⾃独⽴,不同的域可以定义同名变量,所以下⾯的rand不再冲突了

#include<iostream>
#include<stdlib.h>
namespace a
{int rand=100;
}
int main()
{return 0;
}

(3)C++中域有函数局部域,全局域,命名空间域,类域;域影响的是编译时语法查找⼀个变量/函数/ 类型出处(声明或定义)的逻辑,所以有了域隔离,名字冲突就解决了。局部域和全局域除了会影响编译查找逻辑,还会影响变量的声明周期,命名空间域和类域不影响变量声明周期。 

(4)namespace只能定义在全局,当然他还可以嵌套定义。

#include<iostream>
#include<stdlib.h>
namespace a
{int rand=100;namespace b  //嵌套使用命名空间{int rand = 90;}
}
int main()
{return 0;
}

(5)项⽬⼯程中多⽂件中定义的同名namespace会认为是⼀个namespace,不会冲突。

(6)C++标准库都放在⼀个叫std(standard)的命名空间中。

2.2 命名空间使用

编译查找⼀个变量的声明/定义时,默认只会在局部或者全局查找,不会到命名空间⾥⾯去查找。所以下⾯程序会编译报错。所以我们要使⽤命名空间中定义的变量/函数,有三种⽅式:

(1)指定命名空间访问,项⽬中推荐这种⽅式。

#include<iostream>
#include<stdlib.h>
namespace a
{int rand=100;namespace b{int rand = 90;}
}
int main()
{std::cout << a::rand << std::endl;//使用空间名加::(变量名/函数名)就可以访问空间中的
//变量/函数return 0;
}

(2)sing将命名空间中某个成员展开,项⽬中经常访问的不存在冲突的成员推荐这种⽅式。

#include<iostream>
#include<stdlib.h>
namespace a
{int c=100;namespace b{int c = 90;}
}
using a::c;
//展开空间中某一个变量
int main()
{std::cout << a::c << std::endl;return 0;
}

(3)展开命名空间中全部成员,项⽬不推荐,冲突⻛险很⼤,⽇常⼩练习程序为了⽅便推荐使⽤。

#include<iostream>
#include<stdlib.h>
namespace a
{int c=100;namespace b{int c = 90;}
}
using namespace a;
//展开空间a
int main()
{std::cout << c << std::endl;return 0;
}

3.c++输入&输出

(1)<iostream>是Input Output Stream的缩写,是标准的输⼊、输出流库,定义了标准的输⼊、输出对象。

(2)std::cin是istream类的对象,它主要⾯向窄字(narrow characters (of type char))的标准输 ⼊流。

(3)std::cout 是ostream 类的对象,它主要⾯向窄字符的标准输出流。

(4)std::endl 是⼀个函数,流插⼊输出时,相当于插⼊⼀个换⾏字符加刷新缓冲区。

(5)<<是流插入运算符,>>是流提取运算符。(C语⾔还⽤这两个运算符做位运算左移/右移)

  (6)使⽤C++输⼊输出更⽅便,不需要像printf/scanf输⼊输出时那样,需要⼿动指定格式,C++的输⼊ 输出可以⾃动识别变量类型(本质是通过函数重载实现的,这个以后会讲到),其实最重要的是 C++的流能更好的⽀持⾃定义类型对象的输⼊输出。

(7)O流涉及类和对象,运算符重载、继承等很多⾯向对象的知识,这些知识我们还没有讲解,所以这 ⾥我们只能简单认识⼀下C++IO流的⽤法,后⾯我们会有专⻔的⼀个章节来细节IO流库。

(8)cout/cin/endl等都属于C++标准库,C++标准库都放在⼀个叫std(standard)的命名空间中,所以要 通过命名空间的使⽤⽅式去⽤他们。

(9)⼀般⽇常练习中我们可以usingnamespacestd,实际项⽬开发中不建议使用using namespace std。

(10)这⾥我们没有包含,也可以使⽤printf和scanf,在包含间接包含了。vs系列 编译器是这样的,其他编译器可能会报错。

#define _CRT_SECURE_NO_WARNINGS 1
#include <iostream>
using namespace std;
int main()
{int a = 0;double b = 0.1;char c = 'x'; cout << a << " " << b << " " << c << endl;std::cout << a << " " << b << " " << c << std::endl;scanf("%d%lf", &a, &b);printf("%d %lf\n", a, b);// 可以⾃动识别变量的类型cin >> a;cin >> b >> c;cout << a << endl;cout << b << " " << c << endl;return 0;
}
#include<iostream>
using namespace std;
int main()
{// 在io需求⽐较⾼的地⽅,如部分⼤量输⼊的竞赛题中,加上以下3⾏代码// 可以提⾼C++IO效率ios_base::sync_with_stdio(false);cin.tie(nullptr);cout.tie(nullptr);return 0;
}

4.缺省参数 

(1)缺省参数是声明或定义函数时为函数的参数指定⼀个缺省值。在调⽤该函数时,如果没有指定实参, 则采⽤该形参的缺省值,否则使⽤指定的实参,缺省参数分为全缺省和半缺省参数。(有些地⽅把 缺省参数也叫默认参数)

#include <iostream>
#include <assert.h>
using namespace std;
void Func(int a = 0)
{cout << a << endl;
}
int main()
{Func(); // 没有传参时,使⽤参数的默认值Func(10); // 传参时,使⽤指定的实参return 0;
}

(2)全缺省就是全部形参给缺省值,半缺省就是部分形参给缺省值。C++规定半缺省参数必须从右往左依次连续缺省,不能间隔跳跃给缺省值。

(3)带缺省参数的函数调⽤,C++规定必须从左到右依次给实参,不能跳跃给实参。

#include <iostream>
using namespace std;
// 全缺省
void Func1(int a = 10, int b = 20, int c = 30)
{cout << "a = " << a << endl;cout << "b = " << b << endl;cout << "c = " << c << endl << endl;
}
// 半缺省
void Func2(int a, int b = 10, int c = 20)
{cout << "a = " << a << endl;cout << "b = " << b << endl;cout << "c = " << c << endl << endl;
}
int main()
{Func1();Func1(1);Func1(1,2);Func1(1,2,3);Func2(100);Func2(100, 200);Func2(100, 200, 300);return 0;
}

(4)函数声明和定义分离时,缺省参数不能在函数声明和定义中同时出现,规定必须函数声明给缺省值。 

void func(int i, int x, int y = 78, int q = 56);
//函数声明和定义分离,缺省参数必须给声明函数中
#include<iostream>
using namespace std;
void func(int i, int x, int y, int q)
{cout << i << x << y << q << endl;
}
int main()
{func(199,90);return 0;}

5.函数重载 

  C++⽀持在同⼀作⽤域中出现同名函数,但是要求这些同名函数的形参不同,可以是参数个数不同或者类型不同。这样C++函数调⽤就表现出了多态⾏为,使⽤更灵活。C语⾔是不⽀持同⼀作⽤域中出现同 名函数的。

// 1、参数类型不同
int Add(int left, int right)
{cout << "int Add(int left, int right)" << endl;return left + right;
}
double Add(double left, double right)
{cout << "double Add(double left, double right)" << endl;return left + right;
}
// 2、参数个数不同
void f()
{cout << "f()" << endl;
}
void f(int a)
{cout << "f(int a)" << endl;
}
// 3、参数类型顺序不同
void f(int a, char b)
{cout << "f(int a,char b)" << endl;
}
void f(char b, int a)
{cout << "f(char b, int a)" << endl;
}

而返回值不能作为重载条件,因为调⽤时也⽆法区分:

//void fxx()
//{}
//
//int fxx()
//{
// return 0;
//}
// 下⾯两个函数构成重载
// f()但是调⽤时,会报错,存在歧义,编译器不知道调⽤谁
void f1()
{cout << "f()" << endl;
}
void f1(int a = 10)
{cout << "f(int a)" << endl;
}
int main()
{Add(10, 20);Add(10.1, 20.2);f();f(10);f(10, 'a');f('a', 10);return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/376522.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

论文学习_An Empirical Study of Deep Learning Models for Vulnerability Detection

1. 引言 研究背景:近年来,深度学习漏洞检测工具取得了可喜的成果。最先进的模型报告了 0.9 的 F1 分数,并且优于静态分析器。结果令人兴奋,因为深度学习可能会给软件保障带来革命性的变化。因此,IBM、谷歌和亚马逊等行业公司非常感兴趣,并投入巨资开发此类工具和数据集。…

微信小程序如何实现登陆和注册功能?

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;开发者-曼亿点 &#x1f468;‍&#x1f4bb; hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍&#x1f4bb; 本文由 曼亿点 原创 &#x1f468;‍&#x1f4bb; 收录于专栏&#xff1a…

最新 Kubernetes 集群部署 + Containerd容器运行时 + flannel 网络插件(保姆级教程,最新 K8S 1.28.2 版本)

资源列表 操作系统配置主机名IP所需插件CentOS 7.92C4Gk8s-master192.168.60.143flannel-cni-plugin、flannel、coredns、etcd、kube-apiserver、kube-controller-manager、kube-proxy、 kube-scheduler 、containerd、pause 、crictlCentOS 7.92C4Gk8s-node01192.168.60.144f…

JVM:运行时数据区

文章目录 一、总览二、程序计数器1、介绍2、程序计数器在运行中会出现内存溢出吗&#xff1f; 三、栈1、介绍2、栈帧的组成部分&#xff08;1&#xff09;局部变量表&#xff08;2&#xff09;操作数栈&#xff08;3&#xff09;帧数据&#xff08;3&#xff09;栈内存溢出&…

everything搜索不到任何文件-设置

版本&#xff1a; V1.4.1.1024 (x64) 问题&#xff1a;搜索不到任何文件 click:[工具]->[选项]->下图所示 将本地磁盘都选中包含

mavsdk_server安卓平台编译

1.下载好mavsdk并进入mavsdk目录 2.生成docker安卓平台文件 docker run --rm dockcross/android-arm64 >./dockcross-android-arm64 3.生成makefile ./dockcross-android-arm64 cmake -DCMAKE_BUILD_TYPERelease -DBUILD_MAVSDK_SERVERON -DBUILD_SHARED_LIBSOFF -Bbuild/…

【学习笔记】4、组合逻辑电路(下)

接前文《【学习笔记】4、组合逻辑电路(上)》 4.4.5 算术运算电路 1. 半加器和全加器 半加器和全加器是算术运算电路中的基本单元。半加器和全加器是1位相加的组合逻辑电路。 &#xff08;1&#xff09;半加器 半加器&#xff1a;只考虑两个加数本身&#xff0c;不考虑低位进…

SuiteCRM SQL注入漏洞复现(CVE-2024-36412)

0x01 产品简介 SuiteCRM是一款屡获殊荣的企业级开源客户关系管理系统&#xff0c;它具有强大的功能和高度的可定制性&#xff0c;且完全免费。 0x02 漏洞概述 SuiteCRM存在SQL注入漏洞&#xff0c;未经身份验证的远程攻击者可以通过该漏洞拼接执行SQL注入语句&#xff0c;从…

C++20中的consteval说明符

在C20中&#xff0c;立即函数(immediate function)是指每次调用该函数都会直接或间接产生编译时常量表达式(constant expression)的函数。这些函数在其返回类型前使用consteval关键字进行声明。 立即函数是constexpr函数&#xff0c;具体情况取决于其要求。与constexpr相同&…

光学遥感图像中的目标检测技术全面综述,以及新的大规模基准数据集DIOR介绍。

原版论文&#xff1a;https://arxiv.org/abs/1909.00133 数据获取地址&#xff1a;https://www.dilitanxianjia.com/15648/ 获取全文可以入下图所示进行操作&#xff1a; 这篇文章主要对光学遥感图像中的目标检测技术进行了全面的综述&#xff0c;并提出了一个新的大规模基准…

神经网络以及简单的神经网络模型实现

神经网络基本概念&#xff1a; 神经元&#xff08;Neuron&#xff09;&#xff1a; 神经网络的基本单元&#xff0c;接收输入&#xff0c;应用权重并通过激活函数生成输出。 层&#xff08;Layer&#xff09;&#xff1a; 神经网络由多层神经元组成。常见的层包括输入层、隐藏层…

Camunda如何通过外部任务与其他系统自动交互

文章目录 简介流程图外部系统pom.xmllogback.xml监听类 启动流程实例常见问题Public Key Retrieval is not allowed的解决方法java.lang.reflect.InaccessibleObjectException 流程图xml 简介 前面我们已经介绍了Camunda的基本操作、任务、表&#xff1a; Camunda组件与服务与…

浏览器插件使用方法

如果我们经常使用的浏览器不是edge或者是chrome浏览器时&#xff0c;需要在浏览器安装插件时&#xff0c;无法获取插件以及不知道如何安装插件&#xff0c;本文章教你如何获取以及安装使用。 获取方法 第一种方法&#xff08;推荐&#xff09; 无需“魔法”&#xff0c;即可访问…

多表联合的查询(实例)、对于前端返回数据有很多表,可以分开操作、debug调试教程

2024.7.13 一、 对于多表的更深层的认识1. 认识2. 多表联合查询的列子&#xff1a;3. 对于多表查询的进一步认识4. 在实现功能的时候&#xff0c;原本对于省市县这样的表&#xff0c;对于项目的要求&#xff0c;是直接全部查询出来&#xff0c;然后开始使用&#xff0c;但我想着…

PDF 中图表的解析探究

PDF 中图表的解析探究 0. 引言1. 开源方案探究 0. 引言 一直以来&#xff0c;对文档中的图片和表格处理都非常有挑战性。这篇文章记录一下最近工作上在这块的探究。图表分为图片和表格&#xff0c;这篇文章主要记录了对表格的探究。还有&#xff0c;我个人主要做日本项目&…

如何解决VMware 安装Windows10系统出现Time out EFI Network...

一、问题描述 使用VMware 17 安装windows10出现如下图所示Time out EFI Network… Windows10镜像为微软官方下载的ISO格式镜像&#xff1b; 二、问题分析 VMware 17 默认的固件类型是UEFI(E)&#xff0c;而微软官网下载的Windows10 ISO格式镜像不支持UEFI(E)&#xff0c;支…

Android APT实战

Android开发中,注解平时我们用的比较多,也许我们会比较好奇,注解的背后是如何工作的,这篇文章帮大家一步步创建一个简单的注解处理器。 简介 APT(Annotation Processing Tool)即注解处理器,在编译的时候可以处理注解然后搞一些事情,也可以在编译时生成一些文件之类的。…

网络安全——防御课实验二

在实验一的基础上&#xff0c;完成7-11题 拓扑图 7、办公区设备可以通过电信链路和移动链路上网(多对多的NAT&#xff0c;并且需要保留一个公网IP不能用来转换) 首先&#xff0c;按照之前的操作&#xff0c;创建新的安全区&#xff08;电信和移动&#xff09;分别表示两个外网…

nginx的四层负载均衡实战

目录 1 环境准备 1.1 mysql 部署 1.2 nginx 部署 1.3 关闭防火墙和selinux 2 nginx配置 2.1 修改nginx主配置文件 2.2 创建stream配置文件 2.3 重启nginx 3 测试四层代理是否轮循成功 3.1 远程链接通过代理服务器访问 3.2 动图演示 4 四层反向代理算法介绍 4.1 轮询&#xff0…

大数据基础:Hadoop之MapReduce重点架构原理

文章目录 Hadoop之MapReduce重点架构原理 一、MapReduce概念 二、MapReduce 编程思想 2.1、Map阶段 2.2、Reduce阶段 三、MapReduce处理数据流程 四、MapReduce Shuffle 五、MapReduce注意点 六、MapReduce的三次排序 Hadoop之MapReduce重点架构原理 一、MapReduce概…