【构建CV图像识别系统】从传统方法到深度学习

目录

  • 1. 图像的基本概念
    • 1.1 像素与色彩
    • 1.2 过滤与卷积
  • 2. 图像分类与检测
  • 3. 图像特征的提取
    • 3.1 全局特征
    • 3.2 局部特征
      • 3.2.1 边缘(Edge)
      • 3.2.2 角点(Corner)
      • 3.2.3 SIFT 特征
  • 4. 传统方法与深度学习在图像识别中的应用
    • 4.1 基于传统方法的图像识别
    • 4.2 基于深度学习的图像识别:卷积神经网络(CNN)
  • 5. 构建图像识别系统的流程
  • 6. 总结与展望

图像识别系统已经成为人工智能的重要应用之一,无论是在安防监控、自动驾驶还是医疗影像分析中,都发挥着关键作用。本文将带你从图像处理的基本概念开始,逐步了解传统的图像特征提取方法,再到如何利用深度学习实现端到端的图像识别。

1. 图像的基本概念

1.1 像素与色彩

  • 像素:图像的最基本单位,每个像素都具有亮度值。对于灰度图,亮度值通常在 0 0 0 255 255 255 之间;而对于彩色图像,则有红、绿、蓝(RGB)三个通道,每个通道也是 0 0 0 255 255 255 的数值。

1.2 过滤与卷积

  • 过滤:在图像处理中,过滤常用于去除噪声或突出图像的某些特征。例如,移动均值滤波就是对图像上邻近像素取平均值,以平滑图像。

  • 填充:当对图像边缘进行滤波时,为了避免边界效应,通常需要对图像边缘进行填充。常见的填充方式有0填充(在边缘填入零值)和最近填充(用最近的像素值进行填充),其中0填充应用最为广泛。

  • 卷积:卷积的核心思想是用一个小的滤波器(或者叫核)在图像上滑动,每一步将滤波器与图像对应区域的像素做乘积并求和,从而得到一个新的像素值。卷积公式一般写为:

( f ∗ g ) ( x , y ) = ∑ i ∑ j f ( i , j ) ⋅ g ( x − i , y − j ) (f * g)(x,y) = \sum_{i}\sum_{j} f(i,j) \cdot g(x-i,y-j) (fg)(x,y)=ijf(i,j)g(xi,yj)

这里, g g g 是滤波器,其中“翻转”操作( g ( x − i , y − j ) g(x-i,y-j) g(xi,yj))确保了滤波器正确对齐图像数据。因为图像数据是离散的,所以积分换成了求和。可以把卷积看作一种“累积系统存量”的操作,它既能实现平滑、边缘检测等功能,也构成了深度学习中卷积神经网络的基础。

2. 图像分类与检测

图像识别任务大体可以分为两类:

  • 图像分类:主要任务是判断图像中是否存在某种物体(例如,有无猫)。整个图像会被看作一个整体,通过提取全局特征后输入到分类器(如支持向量机、决策树等传统模型)中进行判断。

  • 图像检测:不仅需要判断图像中存在目标,还要确定目标的位置。常用的方法是先提取图像特征,然后通过对像素或区域进行聚类,识别出物体的边界和位置。

3. 图像特征的提取

图像特征大致分为两类:全局特征和局部特征。

3.1 全局特征

  • 亮度直方图:统计图像中各个灰度值的像素数量,反映了图像整体的亮度分布情况。整个图像只有一个直方图,因此它是全局的描述。

3.2 局部特征

局部特征主要描述图像中局部区域的重要信息,常见的有边缘、角点以及 SIFT(尺度不变特征变换)关键点。

3.2.1 边缘(Edge)

边缘是图像中灰度变化剧烈的地方。Canny 边缘检测算法是一种经典方法,其流程大致为:

  1. 高斯滤波降噪:由于图像存在噪声,Canny 算法首先利用高斯滤波对图像进行平滑。高斯模糊可以理解为用一个“模糊窗口”对图像做卷积运算,从而减弱噪声的影响,使得后续的边缘检测更稳定。

  2. 梯度计算:对平滑后的图像计算一阶导数(梯度),找出灰度变化最大的区域。

  3. 非极大值抑制与双阈值检测:最后通过一系列步骤确定边缘的位置。

通俗来讲,高斯滤波就像是在图像上盖上一层柔软的“滤网”,把那些微小的噪点“模糊”掉,使真正的边缘更加明显。

3.2.2 角点(Corner)

角点是图像中两个边缘交汇的地方,具有旋转不变性平移不变性,但不一定具备尺度不变性。常见的 Harris 角点检测方法使用图像在 x x x 轴和 y y y 轴的导数构造一个矩阵,再通过特征值分解来判断局部区域内的变化情况。简单来说:

  • 想象你在观察一个图像区域,当你移动视角时,如果该区域的亮度变化在所有方向上都很明显,那么这个点就是一个角点。

  • 数学上,通过计算一个小区域内梯度的分布情况,可以用特征值来度量不同方向上的变化,两个较大的特征值通常表明该区域存在角点。

3.2.3 SIFT 特征

SIFT(尺度不变特征变换)算法能生成满足旋转、平移和尺度不变性的关键点:

  • 多尺度高斯模糊:利用不同标准差的高斯滤波,生成一系列不同尺度的图像。

  • 关键点检测:在这些尺度空间中寻找局部极值点,确定图像中最稳定的特征位置。

  • 方向确定与描述:在每个关键点周围计算梯度方向,选出变化最显著的方向作为关键点的主方向;同时,记录周围的梯度信息作为关键点描述,方便后续图像匹配与相似度计算(例如通过欧氏距离来比较描述子的相似性)。

4. 传统方法与深度学习在图像识别中的应用

4.1 基于传统方法的图像识别

传统方法通常采用先提取图像特征,再使用经典机器学习模型进行分类或检测。例如,利用亮度直方图、边缘和角点等特征输入到支持向量机或决策树模型中。这种方法的优点在于理解过程明确、计算量较低;但缺点是需要设计和调试大量特征提取算法,且在复杂场景下容易受到干扰。

4.2 基于深度学习的图像识别:卷积神经网络(CNN)

近年来,卷积神经网络(CNN)的出现彻底改变了图像识别领域。CNN 可以实现端到端的学习,即直接从原始图像输入到输出结果,无需人工设计特征提取模块。

  • 卷积层:自动学习图像的局部特征,能够识别边缘、角点等低级特征,并逐渐组合成高级语义信息。

  • 池化层:用于对卷积层输出的特征进行降采样,压缩信息量的同时保留最重要的特征。常见的有最大池化和平均池化。

这种端到端的方法大大降低了人工干预的需求,并在许多实际应用中取得了比传统方法更优异的表现。

5. 构建图像识别系统的流程

无论采用传统方法还是深度学习方法,构建一个图像识别系统的基本流程大致如下:

  1. 数据准备与预处理
  • 收集足够的图像数据,并对图像进行归一化、尺寸调整、去噪等预处理操作。
  1. 特征提取
  • 传统方法:利用滤波、卷积等技术提取图像的全局和局部特征。

  • 深度学习:直接输入预处理后的图像,让 CNN 自动学习特征。

  1. 模型设计与训练
  • 传统方法:选择合适的分类器(如 SVM、KNN 等)并进行训练。

  • 深度学习:设计合适的 CNN 架构,通过大量数据训练模型参数。

  1. 模型评估与调优
  • 使用验证集评估模型性能,通过交叉验证、超参数调优等方法不断改进模型效果。
  1. 部署与应用
  • 将训练好的模型部署到实际系统中,结合前端界面、服务器等实现实时图像识别应用。

6. 总结与展望

从像素、过滤、卷积,到传统的边缘检测、角点检测,再到基于深度学习的 CNN,图像识别系统经历了从手工设计特征到自动特征学习的巨大转变。虽然传统方法在理解上更直观,但深度学习凭借其强大的端到端特性,已成为当前图像识别领域的主流技术。未来,随着计算能力和数据量的不断提升,我们有理由相信图像识别技术将在更多领域实现突破,并推动智能系统的发展。

通过对基本概念和关键技术的深入理解,我们不仅能更好地构建图像识别系统,还能为解决更复杂的视觉任务打下坚实基础。


这篇博客旨在帮助读者理解图像识别系统背后的基本原理,并提供一个由传统方法到深度学习技术的全景视角。希望对你的学习和实践有所启发!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/37910.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python散点图(Scatter Plot):数据探索的“第一张图表”

在数据可视化领域,散点图是一种强大而灵活的工具,它能够帮助我们直观地理解和探索数据集中变量之间的关系。本文将深入探讨散点图的核心原理、应用场景以及如何使用Python进行高效绘制。 后续几篇将介绍高级技巧、复杂应用场景。 Python散点图(Scatter Plot):高阶分析、散点…

docker利用ollama +Open WebGUI在本地搭建部署一套Deepseek-r1模型

系统:没有限制,可以运行docker就行 磁盘空间:至少预留50GB; 内存:8GB docker版本:4.38.0 桌面版 下载ollama镜像 由于docker镜像地址,网络不太稳定,建议科学上网的一台服务器拉取ollama镜像&am…

JavaScript |(六)DOM事件 | 尚硅谷JavaScript基础实战

学习来源:尚硅谷JavaScript基础&实战丨JS入门到精通全套完整版 笔记来源:在这位大佬的基础上添加了一些东西,欢迎大家支持原创,大佬太棒了:JavaScript |(六)DOM事件 | 尚硅谷JavaScript基础…

卷积神经网络 - 梯度和反向传播算法

在卷积网络中,参数为卷积核中权重以及偏置。和全连接前馈网络类似,卷积网络也可以通过误差反向传播算法来进行参数学习。本文我们从数学角度,来学习卷积神经网络梯度的推导和其反向传播算法的原理。 一、梯度:损失函数 L 关于第 …

鸿蒙NEXT项目实战-百得知识库03

代码仓地址,大家记得点个star IbestKnowTeach: 百得知识库基于鸿蒙NEXT稳定版实现的一款企业级开发项目案例。 本案例涉及到多个鸿蒙相关技术知识点: 1、布局 2、配置文件 3、组件的封装和使用 4、路由的使用 5、请求响应拦截器的封装 6、位置服务 7、三…

【测试篇】关于allpairs实现正交测试用例保姆级讲解,以及常见的错误问题

前言 🌟🌟本期讲解关于测试工具相关知识介绍~~~ 🌈感兴趣的小伙伴看一看小编主页:GGBondlctrl-CSDN博客 🔥 你的点赞就是小编不断更新的最大动力 🎆那么废话不多说…

OpenCV图像拼接(4)图像拼接模块的一个匹配器类cv::detail::BestOf2NearestRangeMatcher

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 cv::detail::BestOf2NearestRangeMatcher 是 OpenCV 库中用于图像拼接模块的一个匹配器类,专门用于寻找两幅图像之间的最佳特征点匹配…

C++: AVL树(实现旋转操作)

前言 map/set容器有个共同点是:其底层都是按照二叉搜索树来实现的,但是二叉搜索树有其自身的缺陷,假如往树中插入的元素有序或者接近有序,二叉搜索树就会退化成单支树,时间复杂度会退化成O(N),因此map、set…

OpenCV中距离公式

一、各类距离公式总结 常见距离公式 欧氏距离: 曼哈顿距离(L1)‌: 切比雪夫距离(Chessboard)‌: 1、点与点距离(欧氏距离) ‌二维空间‌ 设两点坐标为 P1(x1,y1)、P2(x2,y2),其距离…

六十天前端强化训练之第二十四天之Vue 模板语法与 v-for 指令大师级详解

欢迎来到编程星辰海的博客讲解 看完可以给一个免费的三连吗,谢谢大佬! 目录 一、模板语法与指令知识精讲 1.1 模板语法三大核心 1.2 常见指令全家福 1.3 v-for 深度解析 二、商品列表示例完整实现 2.1 完整可运行代码 2.2 代码解析 2.3 运行效果…

XSS跨站脚本攻击漏洞(Cross Site Scripting)

前提概要 本文章主要用于分享XSS跨站脚本攻击漏洞基础学习,以下是对XSS跨站脚本攻击漏洞的一些个人解析,请大家结合参考其他文章中的相关信息进行归纳和补充。 XSS跨站脚本攻击漏洞描述 跨站脚本攻击(XSS)漏洞是一种常见且危害较…

用ArcGIS做一张符合环评要求的植被类型图

植被类型图是环境影响评价(环评)中的重要图件,需满足数据准确性、制图规范性和信息完整性等要求。本教程将基于ArcMap平台,从数据准备到成果输出,详细讲解如何制作符合环评技术规范的植被类型图。 ArcGIS遥感解译土地…

详解string类+迭代器

迭代器 概念:在 C 中,迭代器是访问容器(如数组、列表、向量、字符串等)元素的一种方式。迭代器提供了一种统一的接口,使得你可以使用相同的代码来遍历不同类型的容器。迭代器本质上是一个指针或者指针的封装&#xff0…

Sqoop安装部署

Apache Sqoop 简介 Sqoop(SQL-to-Hadoop)是 Apache 开源项目,主要用于: 将关系型数据库中的数据导入 Hadoop 分布式文件系统(HDFS)或相关组件(如 Hive、HBase)。 将 Hadoop 处理后…

软件工程之软件验证计划Software Verification Plan

个人主页:云纳星辰怀自在 座右铭:“所谓坚持,就是觉得还有希望!” 本文为基于ISO26262软件验证计划模板,仅供参考。 软件验证计划,包括: 1. 软件需求验证计划 2. 软件架构设计验证计划 3. 软件单…

Windows系统本地部署OpenManus对接Ollama调用本地AI大模型

文章目录 前言1. 环境准备1.1 安装Python1.2. 安装conda 2. 本地部署OpenManus2.1 创建一个新conda环境2.2 克隆存储库2.3 安装依赖环境 3. 安装Ollama4. 安装QwQ 32B模型5. 修改OpenManus配置文件6. 运行OpenManus7.通过网页使用OpenManus8. 安装内网穿透8.1 配置随机公网地址…

计算机网络总结

一、IP地址及子网掩码、MAC 二、DNS、ARP 三、DHCP、UDP、TCP 四、NAT、NAPT、端口、网关 五、路由器与交换机 六、OSI模型 一、IP地址及子网掩码、MAC 1.1 IP地址的作用 用来全局网络通信(门牌号)用来区分相同网络之间的主机 1.2 子网掩码的作用 …

MySQL0基础学习记录-下载与安装

下载 下载地址: (Windows)https://dev.mysql.com/downloads/file/?id536787 安装 直接点next,出现: 点execute 然后一直next到这页: next 然后需要给root设置一个密码: 在next。。很多页…

React基础语法速览

一、项目创建 npm create vite 这里选择react即可,如图: 二、基本文件说明 react函数式编程时,用的是JSX语法进行开发的,这里注意,return时只能有一个根标签; 三、React核心语法 1.插值功能 插值可以使用…

IT工具 | node.js 进程管理工具 PM2 大升级!支持 Bun.js

P(rocess)M(anager)2 是一个 node.js 下的进程管理器,内置负载均衡,支持应用自动重启,常用于生产环境运行 node.js 应用,非常好用👍 🌼概述 2025-03-15日,PM2发布最新版本v6.0.5,这…