【大数据算法】时间亚线性算法之:时间亚线性判定算法概述。

时间亚线性判定算法概述

  • 1、引言
  • 2、空间亚线性算法
    • 2.1 定义
    • 2.2 实现方式
    • 2.3 应用场景
      • 2.3.1 大数据分析
      • 2.3.2 流数据处理
      • 2.3.3 近似计算
      • 2.3.4 稀疏数据操作
    • 2.4 代码示例
  • 3、总结

1、引言

小屌丝:鱼哥,最近看新闻没啊?
小鱼:我天天看新闻啊,
小屌丝:哎,我说的是爆炸性新闻
小鱼:有啥新闻这么让你爆炸啊?
小屌丝:美国战机被黎巴嫩击落了。
小鱼:哦,这条新闻,确实很炸裂啊。
小屌丝:那可不,我就给你看个照片
在这里插入图片描述

小鱼:你可真是"大可爱"。
小屌丝:我不可爱,谁可爱。
小鱼:嗯,嗯,没错,你是大可爱! ! !

在这里插入图片描述

小屌丝:鱼哥,你看,我都跟你说了这么炸裂的新闻,作为信息交换,你是不是可以给我讲一个爆炸性的知识啊
小鱼:我可没说跟你交换。
小屌丝:你确定???
小鱼:必须得,君子岂能为随便折腰~
小屌丝:那~ 我可就…
小鱼:… 好吧,我答应你的条件
小屌丝:鱼哥,都说有眼力见的人仕途一片坦途。
小鱼:你又想说什么。
小屌丝:嘿嘿,喝茶,咱喝茶。

在这里插入图片描述

2、空间亚线性算法

2.1 定义

时间亚线性判定算法是指那些其时间复杂度在 O ( l o g N ) O(logN) O(logN) 或更低(例如 O ( 1 ) O(1) O(1))的算法。
这种算法在处理大规模数据时表现优越,能够有效减少处理时间,提高效率。

这类算法对需快速判定某些条件的应用场景尤为重要,例如数据查找、模式匹配、实时系统等。

2.2 实现方式

时间亚线性判定算法通过以下几种方式实现:

  • 预处理和索引:通过预处理数据集,把结果以某种格式存储起来,从而在查询时能迅速定位。
  • 分治法:将问题分解成较小的子问题,然后分别处理,从而减少总的时间复杂度。
  • 哈希表:利用哈希表进行快速查找,减少查询时间。
  • 空间换时间:通过增加额外的存储空间来提高运算速度。

2.3 应用场景

间亚线性判定算法在多个领域有着广泛的应用,包括但不限于:

  • 大数据分析:在处理大规模数据集时,时间亚线性算法能够显著提高分析效率,尤其是在数据量远超可用内存或处理时间有限的情况下。
  • 流数据处理:对于连续到达的数据流,时间亚线性算法允许对数据流进行单遍扫描或有限次数扫描,适用于实时数据处理场景。
  • 近似计算:在某些情况下,精确解并不是必需的,或者精确解的计算成本过高。时间亚线性算法通过提供近似解来满足实际需求,同时降低计算复杂度。
  • 稀疏数据操作:在处理含有大量零元素的稀疏矩阵或稀疏图时,时间亚线性算法通过跳过零元素进行计算,显著提高处理效率。

在这里插入图片描述

2.3.1 大数据分析

  • 在大数据分析领域,时间亚线性判定算法的应用尤为突出。

  • 面对庞大的数据集,传统的线性时间算法往往因为计算复杂度过高而无法在有限的时间内完成分析任务。

  • 而时间亚线性算法则能够通过高效的抽样、数据压缩和近似计算等技术,在保持一定精确度的同时,显著降低计算复杂度,提高分析效率。

  • 这对于数据量远超可用内存或处理时间有限的情况尤为重要,使得大数据分析变得更加可行和高效。

2.3.2 流数据处理

  • 在流数据处理场景中,数据是连续到达的,且数据量可能非常大。

  • 传统的算法往往需要对数据进行多次扫描或存储大量中间结果,导致计算复杂度和存储需求都很高。

  • 而时间亚线性判定算法则允许对数据流进行单遍扫描或有限次数扫描,通过在线处理的方式实时产生结果。

  • 这使得时间亚线性算法在实时数据处理场景中具有显著优势,能够满足对实时性要求较高的应用需求。

2.3.3 近似计算

  • 在某些情况下,精确解并不是必需的,或者精确解的计算成本过高。

  • 例如,在一些机器学习或数据挖掘任务中,我们可能只需要找到一个足够好的解,而不是最优解。

  • 时间亚线性判定算法通过提供近似解来满足这些实际需求。

  • 它们通过牺牲一定的精确性来换取计算效率的提升,从而在保持一定精度的同时降低计算复杂度。

  • 这使得时间亚线性算法在需要快速得到结果且对精度要求不是非常高的场景中具有广泛应用。

2.3.4 稀疏数据操作

  • 在处理含有大量零元素的稀疏矩阵或稀疏图时,传统的算法往往需要遍历整个数据结构进行计算,导致计算效率低下。
  • 而时间亚线性判定算法则能够利用稀疏性的特点,通过跳过零元素进行计算来显著提高处理效率。
  • 例如,在一些图算法或矩阵运算中,时间亚线性算法可以利用稀疏性的特性来减少不必要的计算量,从而在保持一定精度的同时提高计算效率。这使得时间亚线性算法在稀疏数据操作中具有显著优势。

2.4 代码示例

# -*- coding:utf-8 -*-
# @Time   : 2024-08-10
# @Author : Carl_DJimport mmh3  # MurmurHash3,一个非加密的哈希函数,常用于散列
from bitarray import bitarray  # 用于创建和操作位数组# 定义Bloom Filter类
class BloomFilter:def __init__(self, size, hash_num):"""初始化Bloom Filter实例:param size: 位数组的大小:param hash_num: 使用的哈希函数数量"""self.size = size  # 位数组的大小self.hash_num = hash_num  # 使用的哈希函数数量self.bit_array = bitarray(size)  # 创建一个指定长度的位数组self.bit_array.setall(0)  # 将位数组的所有位初始化为0def add(self, string):"""添加元素到Bloom Filter中:param string: 要添加的字符串"""# 对于每一个哈希函数for seed in range(self.hash_num):# 使用MurmurHash3对字符串进行哈希运算,并取模以确保结果在位数组范围内result = mmh3.hash(string, seed) % self.size# 将计算出的位位置设置为1self.bit_array[result] = 1def lookup(self, string):"""查找元素是否可能存在于Bloom Filter中:param string: 要查找的字符串:return: 如果所有位都为1,则返回"Probably",否则返回"Definitely not""""# 对于每一个哈希函数for seed in range(self.hash_num):# 使用MurmurHash3对字符串进行哈希运算,并取模以确保结果在位数组范围内result = mmh3.hash(string, seed) % self.size# 检查对应位是否为0if self.bit_array[result] == 0:# 如果有一个位为0,则该元素肯定不在集合中return "Definitely not"# 如果所有位都为1,则该元素可能存在(也可能误报)return "Probably"# 创建一个Bloom Filter实例
bloom = BloomFilter(500000, 7)# 向Bloom Filter中添加字符串"hello"
bloom.add("hello")# 查找"hello"是否存在于Bloom Filter中
print(bloom.lookup("hello"))  # 输出: Probably# 查找"world"是否存在于Bloom Filter中
print(bloom.lookup("world"))  # 输出: Definitely not

3、总结

时间亚线性判定算法在处理大规模数据集时具有显著优势,它们通过高效的抽样、空间压缩、数据结构优化和近似计算等技术,在保持一定精确度的同时显著提高处理效率。

这些算法在大数据分析、流数据处理、稀疏数据操作等领域有着广泛的应用前景。

随着数据量的不断增长,掌握和应用这些算法技术对于提升数据处理能力至关重要。

我是小鱼

  • CSDN 博客专家
  • 阿里云 专家博主
  • 51CTO博客专家
  • 企业认证金牌面试官
  • 多个名企认证&特邀讲师等
  • 名企签约职场面试培训、职场规划师
  • 多个国内主流技术社区的认证专家博主
  • 多款主流产品(阿里云等)评测一等奖获得者

关注小鱼,学习【大数据算法】领域最新最全的领域知识。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/413305.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Upload-labs靶场通过攻略

pass-01 1.写一个一句话木马 2.上传php文件 当我们上传php文件时 提示文件类型不正确 3.修改php后缀 通过修改php后缀为jpg 抓包再次修改成php文件 4.查看是否上传成功 页面显示图片 表示上传成功 pass-02 1.上传一个php文件 页面显示文件类型不正确 2.抓包修改 可以看…

【化学方程式配平 / 3】

题目 代码 #include <bits/stdc.h> using namespace std; const double eps 1e-8; unordered_map<string, int> e; int eidx, midx; //eidx 元素数&#xff0c; midx 物质数 double matrix[45][45]; int q; bool check_alpha(char c) {if(c > a && c …

Android APK打包脚本

build.gradle版本 同目录创建config.gradle文件写入需要的信息入 config.gradle文件内容 ext { /*** 自定义APP运行环境* dev: 开发* test: 测试* pro: 生产*/ env "pro" /*** 动态参数配置&#xff0c;根据自己需要添加参数* APP_ID: 包名* VERSION_CODE: 版本号…

【TDesign】如何修改CSS变量

Tdesign的组件想通过style定义样式没效果, 可以通过组件api文档修改, 组件提供了下列 CSS 变量&#xff0c;可用于自定义样式。 比如Cell, https://tdesign.tencent.com/miniprogram/components/cell?tabapi 提供了&#xff1a; –td-cell-left-icon-color 图标颜色 –td-cell…

yolo训练策略--使用 Python 和 OpenCV 进行图像亮度增强与批量文件复制

简介 在计算机视觉和深度学习项目中&#xff0c;数据增强是一种常用的技术&#xff0c;通过对原始图像进行多种变换&#xff0c;可以增加数据集的多样性&#xff0c;从而提高模型的泛化能力。本文将介绍如何使用 Python 和 OpenCV 实现图像的亮度增强&#xff0c;并将增强后的…

Golang | Leetcode Golang题解之第383题赎金信

题目&#xff1a; 题解&#xff1a; func canConstruct(ransomNote, magazine string) bool {if len(ransomNote) > len(magazine) {return false}cnt : [26]int{}for _, ch : range magazine {cnt[ch-a]}for _, ch : range ransomNote {cnt[ch-a]--if cnt[ch-a] < 0 {r…

Vue(八) localStorage、组件的自定义事件、Todo案例修改

文章目录 一、浏览器本地存储1. 相关API2. Todo案例中的应用 二、组件的自定义事件1. 回顾props传值方式2. 绑定自定义事件&#xff08;1&#xff09;方式一&#xff1a;v-on或&#xff08;2&#xff09;方式二&#xff1a; ref 3. 解绑自定义事件4. 注意点总结 三、Todo案例采…

算法复盘——LeetCode hot100:哈希

文章目录 哈希表哈希表的基本概念哈希表的使用1. 插入操作2. 查找操作3. 删除操作 哈希表的优点和缺点1.两数之和复盘 242.有效的字母异位词复盘 49.字母异位词分组复盘 128. 最长连续序列复盘HashSet 哈希表 先来搞清楚什么是哈希表吧~ 概念不清楚方法不清楚怎么做题捏 哈希表…

c++习题28-计算2的N次方

目录 一&#xff0c;题目 二&#xff0c;思路 三&#xff0c;代码 一&#xff0c;题目 描述 任意给定一个正整数N(N<100)&#xff0c;计算2的n次方的值。 输入描述 输入一个正整数N。 输出描述 输出2的N次方的值。 用例输入 1 5 用例输出 1 32 二&#xff0…

【王树森】Transformer模型(2/2): 从Attention层到Transformer网络(个人向笔记)

Single Head Self-Attention 上节课讲到的属于单头注意力&#xff1a; Multi-Head Self-Attention 使用 l l l 个单头注意力层堆叠成一个多头注意力层&#xff0c;注意它们之间不共享参数一个单头注意力有 3 个参数矩阵&#xff0c;所以多头注意力有 3 l 3l 3l 个参数矩阵…

docker文档

一、docker概述 1、java项目通过docker打包成镜像&#xff08;包含了所有的环境&#xff09;放到docker仓库中&#xff0c;只需要下载发布的镜像直接运行即可&#xff1b; 2、虚拟机技术的缺点&#xff1a; 资源占用多、冗余步骤多、启动很慢 容器化技术&#xff1a; 比较do…

色彩与笔触的交响:广州米塔在线科教技术有限公司揭秘PS绘画秘籍!

在数字艺术的广阔天地里,PS无疑是一颗璀璨的明星&#xff0c;它不仅在图像处理领域独领风骚&#xff0c;更以其强大的功能成为了众多艺术家和设计师进行数字绘画的首选工具。广州米塔在线科教技术有限公司&#xff0c;作为致力于艺术教育与技术分享的平台&#xff0c;深知掌握P…

RNN及其变体

RNN及其变体 RNN模型定义 循环神经网络:一般接受的一序列进行输入,输出也是一个序列 作用和应用场景: RNN擅长处理连续语言文本,机器翻译,文本生成,文本分类,摘要生成 RNN模型的分类 根据输入与输出结构 N Vs N : 输入和输出等长,应用场景:对联生…

科技改变搜索习惯:Anytxt Searcher,重新定义你的信息获取方式!

前言 史蒂夫乔布斯所言&#xff1a;“创新就是把事物联系起来的能力”。这种能力不仅推动了全球科技的飞速发展&#xff0c;也深刻影响着我们的日常生活方式。在这样的背景下&#xff0c;一款名为Anytxt Searcher的本地数据全文搜索引擎应运而生&#xff0c;它以其独特的功能和…

【Android】使用 ADB 查看 Android 设备的 CPU 使用率

目录 一 查看整体CPU使用率 1 top 二 查看特定应用的CPU使用率 1 获取特定应用的进程 ID (PID) 2 使用 top 命令并过滤该 PID 三 常见的CPU相关命令参数 1 adb shell top 参数 一 查看整体CPU使用率 1 top top命令将显示当前所有进程的 CPU 使用情况&#xff0c;包括每…

【Datawhale AI夏令营】从零上手CV竞赛Task3

文章目录 前言一、数据集增强二、设置 YOLO 模型训练参数三、模型微调总结 前言 本文的Task3对Task1的baseline代码继续进行优化的过程。 一、数据集增强 数据增强是机器学习和深度学习中常用的技术&#xff0c;用于通过从现有数据集中生成新的训练样本来提高模型的泛化能力。…

gitee版本控制

前置要求&#xff1a; 安装Git git下载地址&#xff1a;https://git-scm.com/download/win 注册gitee gitee官网&#xff1a;Gitee - 基于 Git 的代码托管和研发协作平台 创建普通项目 目录 git推送远程仓库基本操作 克隆仓库到本地 项目上传 版本管理 分支管理版本…

基于ssm的实习课程管理系统/在线课程系统

实习课程管理系统 摘 要 互联网的快速发展&#xff0c;给各行各业带来不同程度的影响&#xff0c;悄然改变人们的生活、工作方式&#xff0c;也倒逼很多行业创新和变革&#xff0c;以适应社会发展的变化。人们为了能够更加方便地管理项目任务&#xff0c;实习课程管理系统被人们…

55.基于IIC协议的EEPROM驱动控制(2)

升腾A7pro的EEPROM芯片为24C64芯片&#xff0c;器件地址为1010_011。 &#xff08;1&#xff09;Visio整体设计视图&#xff08;IIC_SCL为250KHz&#xff0c;IIC_CLK为1MHz&#xff0c;addr_num为1&#xff0c;地址字节数为2字节&#xff0c;addr_num为0&#xff0c;地址字节数…

产品经理的学习笔记(全集)-持续更新

1.前言 产品经理不是一个软件&#xff0c;也不是一个专业技能&#xff0c;是一个思维量变的过程&#xff1b;内容介绍&#xff1a;P1-产品经理基础认知&#xff1b;P2-从0-1搭建实战项目&#xff08;电商&#xff09; 2.产品经理基础 2.1产品经理定义 产品管理--产品的设计…