RP2040 C SDK clocks时钟源配置使用

RP2040 C SDK clocks时钟源配置使用


  • 🌿RP2040时钟源API函数文档:https://www.raspberrypi.com/documentation/pico-sdk/hardware.html#group_hardware_clocks

  • 🍁RP2040时钟树:
    在这里插入图片描述

系统时钟源可以来自外部时钟输入(external clocks)、 晶体振荡器(XOSC)或者经过晶体振荡器到USB时钟倍频、或者系统倍频、ROSC(环形振荡器)。

  • ✨RP2040系统默认工作频率是125MHz ,最高是133MHz ,应该是可以超频,但是不建议这么做。

📘PLL倍频介绍

从上面的那张图可以看到系统倍频源可以选择USB PLL和System PLL。

• pll_sys - Used to generate up to a 133MHz system clock
• pll_usb - Used to generate a 48MHz USB reference clock

  • 倍频内部转换结构图:
    在这里插入图片描述
    注解:在两个PLLs上,FREF(参考)输入连接到晶体振荡器的XI输入。PLL包含一个VCO,它通过反馈回路(相位频率检测器和环路滤波器)锁定到参考时钟的恒定比率。这可以合成非常高的频率,它可以被后分频器所划分。
  • 🔖PLL的最终输出频率计算公式: FOUTPOSTDIV = (FREF / REFDIV) × FBDIV / (POSTDIV1 × POSTDIV2).
  • 🌿PLL设计时,需要注意以下约束条件来选择PLL参数:
  • 最小参考频率(FREF / REFDIV)是5MHz
  • 振荡器频率(FOUTVCO))必须在750兆赫→1600MHz
  • 反馈分配器(FBDIV)必须在16→320
  • 后分配器POSTDIV1和POSTDIV2必须在1→7
  • 最大输入频率(FREF/REFDIV)VCO频率除以16,由于最小反馈除数
    此外,必须遵守芯片时钟发生器(连接到输出)的最大频率。对于系统PLL,这是133MHz,而对于USB PLL,这是48MHz。
  • 🔖数据手册原文(第229页):
    • Minimum reference frequency (FREF / REFDIV) is 5MHz
    • Oscillator frequency (FOUTVCO) must be in the range 750MHz → 1600MHz
    • Feedback divider (FBDIV) must be in the range 16 → 320
    • The post dividers POSTDIV1 and POSTDIV2 must be in the range 1 → 7
    • Maximum input frequency (FREF / REFDIV) is VCO frequency divided by 16, due to minimum feedback divisor
    Additionally, the maximum frequencies of the chip’s clock generators (attached to FOUTPOSTDIV) must be respected. For the system PLL this is 133MHz, and for the USB PLL, 48MHz.
  • ✨在硬件设计上,选择外部晶体振荡器是,时钟频率参数:5- 15MHz
  • 👉当POSTDIV1和POSTDIV2需要两个不同的值时,最好将较高的值分配给POSTDIV1,以获得较低的功耗。
  • 将12MHz晶体连接到晶体振荡器,这意味着最小可实现和合法的VCO频率是12MHz×63 = 756MHz,最大VCO是12MHz×133 = 1596MHz,所以FBDIV必须保持在63→133范围内。例如,将FBDIV设置为100将合成一个1200MHz的VCO频率。一个POSTDIV1值为6,一个POSTDIV2值为2,将总共除以12,在PLL的最终输出处产生一个干净的100MHz。
  • 📐官方在PICO SDK资料包,中提供了一个换算PLL参数的.py文件:"\Pico SDK v1.5.1\pico-sdk\src\rp2_common\hardware_clocks\scripts\vcocalc.py",输入最终频率,即可获得各PLL参数。
    在这里插入图片描述
  • 🔖其中的PD1对应的是POSTDIV1,PD2对应POSTDIV2
  • 🌿通过vcocalc.py计算获得的参数,软件代码配置函数:
void pll_init(PLL pll, uint refdiv, uint vco_freq, uint post_div1, uint post_div2)
  • 📑配置频率方法:

✨调整PLL_SYS时,需要先让系统时钟切换到PLL_USB,不然系统就进入锁死状态(RESUS).


// Change clk_sys to be 48MHz. The simplest way is to take this from PLL_USB// which has a source frequency of 48MHzclock_configure(clk_sys,CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLKSRC_CLK_SYS_AUX,CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_PLL_USB,48 * MHZ,48 * MHZ);
// Turn off PLL sys for good measurepll_deinit(pll_sys);
pll_init(pll_sys, 1, 1596 * MHZ, 6, 2);
clock_configure(clk_sys,//设置系统时钟,设置源为PLL_SYS,辅助源为CLK_SYS_AUX,目标频率为133MHzCLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLKSRC_CLK_SYS_AUX,CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_PLL_SYS,133 * MHZ,//辅助源频率133 * MHZ);//目标频率
  • 主时钟源:
    在这里插入图片描述
  • 辅助时钟源
    在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

📒Resus状态

有可能编写出无意中阻止clk_sys的软件。这通常会导致内核和片上调试器的不可恢复的锁定,从而使用户无法跟踪该问题。为了缓解这种情况,提供了一个自动复苏电路,如果在用户定义的间隔内没有检测到边缘,该电路将clk_sys切换到已知的良好时钟源。已知的良好源是clk_ref,它可以从XOSC、ROSC或外部源驱动。(手册189页)

  • 👉一旦芯片进入Resus状态,则需要按住Boot按键,接入USB口,让芯片进入DFU模式,才能正常通过CMSIS-DAP重新烧写程序。

  • 🌿或者使用下面的函数,直接自动配置:

set_sys_clock_khz(133000, true);

🌟请注意,并非所有时钟频率都是可能的;
Note that not all clock frequencies are possible;
最好是你it is preferred that you
*使用src/rp2_common/hardware_clocks/scripts/vcocalc.py计算参数
*use src/rp2_common/hardware_clocks/scripts/vcocalc.py to calculate the parameters
*用于set_sys_clock_pll
*for use with set_sys_clock_pll

📗clock API有关函数
bool clock_configure (clock_handle_t clock, uint32_t src, uint32_t auxsrc, uint32_t src_freq, uint32_t freq)
Configure the specified clock.void clock_configure_undivided (clock_handle_t clock, uint32_t src, uint32_t auxsrc, uint32_t src_freq)
Configure the specified clock to use the undividded input source.void clock_configure_int_divider (clock_handle_t clock, uint32_t src, uint32_t auxsrc, uint32_t src_freq, uint32_t int_divider)
Configure the specified clock to use the undividded input source.void clock_stop (clock_handle_t clock)
Stop the specified clock.uint32_t clock_get_hz (clock_handle_t clock)
Get the current frequency of the specified clock.uint32_t frequency_count_khz (uint src)
Measure a clocks frequency using the Frequency counter.void clock_set_reported_hz (clock_handle_t clock, uint hz)
Set the "current frequency" of the clock as reported by clock_get_hz without actually changing the clock.void clocks_enable_resus (resus_callback_t resus_callback)
Enable the resus function. Restarts clk_sys if it is accidentally stopped.void clock_gpio_init_int_frac (uint gpio, uint src, uint32_t div_int, uint8_t div_frac)
Output an optionally divided clock to the specified gpio pin.static void clock_gpio_init (uint gpio, uint src, float div)
Output an optionally divided clock to the specified gpio pin.bool clock_configure_gpin (clock_handle_t clock, uint gpio, uint32_t src_freq, uint32_t freq)
Configure a clock to come from a gpio input.
🛠使用时钟配置相关函数,CMakeLists.txt,需要包含hardware_clocks
# Add the standard library to the build
target_link_libraries(RP2040_CLOCKpico_stdlibhardware_clocks)

📝测试例程

// This code is used to test the clocks of the RP2040 chip.
/*
时钟倍频参数计算:"\Pico SDK v1.5.1\pico-sdk\src\rp2_common\hardware_clocks\scripts\vcocalc.py"
计算方法:vcocalc.py 133CMSIS-DAP烧录命令:openocd -f interface/cmsis-dap.cfg -f target/rp2040.cfg -c  "adapter speed 5000"-c "program RP2040_CLOCK.elf verify reset exit"jlink命令: openocd -f interface/jlink.cfg -f target/rp2040.cfg  -c  "adapter speed 2000" -c  "program RP2040_RTC.elf verify reset exit"*/
#include <stdio.h>
#include "pico/stdlib.h"
#include "hardware/gpio.h"
#include "hardware/divider.h"
#include "hardware/clocks.h"
#include "hardware/pll.h"
#include "hardware/clocks.h"
#include "hardware/structs/pll.h"
#include "hardware/structs/clocks.h"#define BUILTIN_LED PICO_DEFAULT_LED_PIN    // LED is on the same pin as the default LED 25void measure_freqs(void) {uint f_pll_sys = frequency_count_khz(CLOCKS_FC0_SRC_VALUE_PLL_SYS_CLKSRC_PRIMARY);uint f_pll_usb = frequency_count_khz(CLOCKS_FC0_SRC_VALUE_PLL_USB_CLKSRC_PRIMARY);uint f_rosc = frequency_count_khz(CLOCKS_FC0_SRC_VALUE_ROSC_CLKSRC);uint f_clk_sys = frequency_count_khz(CLOCKS_FC0_SRC_VALUE_CLK_SYS);uint f_clk_peri = frequency_count_khz(CLOCKS_FC0_SRC_VALUE_CLK_PERI);uint f_clk_usb = frequency_count_khz(CLOCKS_FC0_SRC_VALUE_CLK_USB);uint f_clk_adc = frequency_count_khz(CLOCKS_FC0_SRC_VALUE_CLK_ADC);uint f_clk_rtc = frequency_count_khz(CLOCKS_FC0_SRC_VALUE_CLK_RTC);printf("pll_sys  = %dkHz\n", f_pll_sys);printf("pll_usb  = %dkHz\n", f_pll_usb);printf("rosc     = %dkHz\n", f_rosc);printf("clk_sys  = %dkHz\n", f_clk_sys);printf("clk_peri = %dkHz\n", f_clk_peri);printf("clk_usb  = %dkHz\n", f_clk_usb);printf("clk_adc  = %dkHz\n", f_clk_adc);printf("clk_rtc  = %dkHz\n", f_clk_rtc);// Can't measure clk_ref / xosc as it is the ref
}int main()
{stdio_init_all();sleep_ms(3500);printf("RP204 Clock Test\n");measure_freqs();
// Change clk_sys to be 48MHz. The simplest way is to take this from PLL_USB// which has a source frequency of 48MHzclock_configure(clk_sys,CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLKSRC_CLK_SYS_AUX,CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_PLL_USB,48 * MHZ,48 * MHZ);                48 * MHZ);// Turn off PLL sys for good measurepll_deinit(pll_sys);pll_init(pll_sys, 1, 1596 * MHZ, 6, 2);clock_configure(clk_sys,//设置系统时钟,设置源为PLL_SYS,辅助源为CLK_SYS_AUX,目标频率为133MHzCLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLKSRC_CLK_SYS_AUX,CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_PLL_SYS,133 * MHZ,//辅助源频率133 * MHZ);//目标频率// clock_configure(clk_peri,//                 0,//                 CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLK_SYS,//                 125 * MHZ,//                 125 * MHZ);//set_sys_clock_khz(124000, true); // 346us//set_sys_clock_khz(126000, true); // 340us//set_sys_clock_khz(128000, true); // 335us//set_sys_clock_khz(130000, true); // 330us//set_sys_clock_khz(131000, true); // 328us// set_sys_clock_khz(133000, true);// 325us// GPIO initialisation.// We will make this GPIO an input, and pull it up by defaultgpio_init(BUILTIN_LED);gpio_set_dir(BUILTIN_LED, 1);gpio_pull_up(BUILTIN_LED);while(true){sleep_ms(1000);gpio_xor_mask(1ul << BUILTIN_LED); // Toggle the LEDmeasure_freqs();__asm volatile ("nop\n");}return 0;
}

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/417959.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

4000字三合一!Stata、SPSS、MATLAB实现多元线性回归详解!

参加数学建模的小伙伴要注意了&#xff1a;多元线性回归几乎是所有分析方式里面最核心、最常用、最全面的模型&#xff0c;博主本科大致参加了10次数模&#xff0c;还有一次正大杯市场调研赛&#xff0c;其中获得拿得出手的奖有9次&#xff0c;有5次都用到了多元线性回归——至…

山东大学OLED透明展示柜案例:科技赋能,创新展示新体验

随着科技的飞速发展&#xff0c;显示技术也在不断突破传统界限&#xff0c;为各行各业带来了全新的展示体验。山东大学集成攻关大平台展厅近期引入了OLED透明展示柜&#xff0c;这一创新举措不仅提升了展厅的展示效果&#xff0c;还为参观者带来了前所未有的互动体验。 背景介绍…

KADAL | Kriging代理模型Python工具箱推荐

用于分析、设计优化和探索的Kriging工具箱 简介Required packagesQuick ExamplesContact特别感谢&#xff1a;参考资料 简介 用于分析、设计优化和探索的克里金法 (Kriging for Analysis, Design optimization, And expLoration, KADAL) 是由万隆理工学院 (Institut Teknologi…

缓存对象反序列化失败

未定义serialVersionUID&#xff0c;会自动生成序列化号 新增了属性&#xff0c;序列号就变了&#xff0c;导致缓存对象反序列化失败。 所有缓存对象必须指定序列化id&#xff01; 那我如何找到未添加字段前 对象的序列化号呢&#xff1f;默认的序列化号是如何生成的呢&#…

身份证实名认证-实名认证API接口文档

1、接口介绍及适用范围 身份证实名认证是指通过验证个人身份证信息的真实性&#xff0c;来确认用户身份的一种安全验证方式。这种认证方式广泛应用于各种需要身份验证的场合&#xff0c;如金融交易、社交媒体注册、网络游戏登录、电子商务平台购物等。 2、接口地址 输入姓名和…

C语言手撕实战代码_二叉树_构造二叉树_层序遍历二叉树_二叉树深度的超详细代码实现

二叉树习题1.通过前序序列和中序序列构造二叉树2.通过层次遍历序列和中序序列创建一棵二叉树3.求一棵二叉树的结点个数4.求一棵二叉树的叶子节点数5.求一棵二叉树中度为1的节点个数6.求二叉树的高度7.求一棵二叉树中值为x的节点作为根节点的子树深度8.判断两棵树是否相似&#…

如何构建短视频矩阵?云微客开启多账号协同作战

你有没有疑惑过&#xff0c;为什么有些账号每一次发布视频&#xff0c;都要艾特一下其他账号呢&#xff1f;那些被艾特的账号&#xff0c;你有点进去关注过吗&#xff1f;其实做过运营的都或多或少的接触过矩阵&#xff0c;短视频矩阵的玩法现在也逐步成为了趋势。企业通过多账…

亿佰特-NT1/NT1-B串口转RJ45以太网模块

亿佰特-NT1/NT1-B串口转RJ45以太网模块 模块概要连接方式配置模块亿佰特网络配置助手配置模块网页版配置模块 串口以太网双向数据收发AT模式配置模块 模块概要 亿佰特官网 https://www.ebyte.com/ 模块概要&#xff1a; 接口方式&#xff1a;TTL串口RJ45工作电压&#xff1a…

C++ 设计模式——解释器模式

目录 C 设计模式——解释器模式1. 主要组成成分2. 逐步构建解释器模式步骤1: 定义抽象表达式步骤2: 实现终结符表达式步骤3: 实现非终结符表达式步骤4: 构建语法树步骤5: 实现内存管理步骤6: 创建上下文和客户端 3. 解释器模式 UML 图UML 图解析 4. 解释器模式的优点5. 解释器模…

FxFactory 8 for Mac 视觉特效插件包安装

Mac分享吧 文章目录 介绍页面效果一、下载软件二、开始安装1、Install安装2、显示软件页面&#xff0c;表示安装成功3、补丁安装 三、注意事项1、若已安装过其他版本&#xff0c;需要使用软件自带的卸载功能进行软件卸载&#xff0c;再安装此版本 安装完成&#xff01;&#x…

像素间的关系(邻接、连通、区域、边界、距离定义)

文章目录 像素的相邻像素4邻域D邻域8邻域 邻接、连通、区域和边界邻接类型连通区域边界 距离测度欧氏距离城市街区距离&#xff08;city-block distance&#xff09;棋盘距离&#xff08;chessboard distance&#xff09; 参考 像素的相邻像素 4邻域 坐标 ( x , y ) (x,y) (x…

ElasticSearch 集群的索引别名管理

一、索引别名 &#xff08;一&#xff09;添加索引别名 1.给单个索引添加别名 POST http://10.0.0.101:9200/_aliases{"actions":[{"add":{"index":"yedu-linux85","alias":"Linux容器运维"} },{"add&q…

Qt QGraphicsView实现图片放缩、鼠标拖动移动、鼠标点位置放大缩小_图片查看

QtQGraphicsView实现图片放缩、鼠标拖动移动、鼠标点位置放大缩小 头文件&#xff1a; #ifndef TIMGWIDGET_H #define TIMGWIDGET_H#include <QGraphicsItem> #include <QMainWindow> #include <QObject> #include <QWidget>// class TImgWidget : pu…

uniapp钱包支付、与设置密码页面

设置密码页面 <template><view class="paymentCodeBox"><!-- 自定义键盘 -->

【ArcGIS Pro实操第二期】最小成本路径(Least-cost path)原理及实操案例

ArcGIS Pro实操第一期&#xff1a;最小成本路径原理及实操案例 概述&#xff08;Creating the least-cost path&#xff09;1.1 原理介绍1.2 实现步骤1.3 应用案例 2 GIS实操2.1 工具箱简介2.1.1 成本路径&#xff08;Cost path&#xff09;2.1.2 成本距离&#xff08;Cost dis…

微信小程序知识点(二)

1.下拉刷新事件 如果页面需要下拉刷新功能&#xff0c;则在页面对应的json配置文件中&#xff0c;将enablePullDownRefresh配置设置为true&#xff0c;如下 {"usingComponents": {},"enablePullDownRefresh": true } 2.上拉触底事件 在很多时候&#x…

《互联网内容审核实战》:搭建团队到绩效激励,一书在手全搞定!“

&#x1f310;在数字时代的浩瀚海洋中&#xff0c;互联网视频、图片、文字等内容如同潮水般汹涌澎湃&#xff0c;它们以惊人的速度传播&#xff0c;连接着世界的每一个角落。这股信息洪流不仅丰富了我们的视野&#xff0c;也带来了前所未有的挑战——如何在享受信息便利的同时&…

Kaggle竞赛——手写数字识别(Digit Recognizer)

目录 1. 数据集介绍2. 数据分析3. 数据处理与封装3.1 数据集划分3.2 将数据转为tensor张量3.3 数据封装 4. 模型训练4.1 定义功能函数4.1 resnet18模型4.3 CNN模型4.4 FCNN模型 5. 结果分析5.1 混淆矩阵5.2 查看错误分类的样本 6. 加载最佳模型7. 参考文献 本次手写数字识别使用…

Lenze伦茨E82ZBC, E82ZBB E82ZMBRB安装说明手测

Lenze伦茨E82ZBC, E82ZBB E82ZMBRB安装说明手测

景联文科技:提供高质量多模态数据标注,推动智能化转型

随着人工智能技术的快速发展&#xff0c;多模态数据标注成为推动智能系统更深层次理解和应用的关键技术之一。 作为行业领先的多模态数据标注服务商&#xff0c;景联文科技凭借其在技术、流程和人才方面的综合优势&#xff0c;推出了全面的多模态标注解决方案&#xff0c;助力…