扩散模型总结

 

目录

定义与原理

发展历程

正向扩散过程

反向扩散过程

噪声预测网络

离散时间模型

连续时间模型

条件扩散模型

生成质量

训练稳定性

采样灵活性

图像生成

音频合成

文本生成

计算效率

模型复杂度


定义与原理

扩散模型是一种新型的生成模型,其核心原理源于热力学中的扩散过程。这种模型通过逐步添加高斯噪声来模拟数据的“扩散”,并学习如何逆向这个过程以生成新的数据。

扩散模型的工作机制可以概括为两个主要过程:

  1. 正向扩散过程 :从原始数据点 (\mathbf{x}_0) 开始,逐步添加高斯噪声,最终得到完全随机的噪声图像 (\mathbf{x}_T) 。这个过程可以用马尔可夫链来描述,每一步的分布为:

[q(\mathbf{x}t|\mathbf{x}{t-1}) = \mathcal{N}(\mathbf{x}t; \sqrt{1 - \beta_t}\mathbf{x}{t-1}, \beta_t\mathbf{I})]

其中, (\beta_t) 是预先定义的噪声参数,随时间逐渐增加。

  1. 反向扩散过程 :学习如何逆向正向扩散过程,从完全随机的噪声图像 (\mathbf{x}T) 开始,逐步去除噪声,最终恢复到原始数据分布 (\mathbf{x}0) 。这个过程通过神经网络 (p{\theta}(\mathbf{x}{t-1}|\mathbf{x}_t)) 来近似,其中 (\theta) 是模型参数。

扩散模型的核心创新在于将生成过程分解为多个小的“去噪”步骤,这种方法允许模型在生成过程中进行自我修正,从而产生更高质量的样本。此外,扩散模型还具有以下特点:

  • 训练稳定性 :通过最大化证据下界 (ELBO) 来训练模型,这使得扩散模型的训练过程更加稳定。

  • 采样灵活性 :可以通过调整采样步数和噪声水平来控制生成质量和多样性。

  • 高分辨率生成 :支持生成高分辨率图像,这在图像生成任务中具有重要意义。

发展历程

扩散模型的发展历程是一个持续创新的过程,其关键节点如下:

  • 2015年 :扩散模型的概念首次提出,奠定了理论基础。

  • 2020年 :Denoising Diffusion Probabilistic Models (DDPM) 的发表标志着扩散模型在图像生成领域的应用开始成为主流。

  • 2021年 :Improved Denoising Diffusion Probabilistic Models对DDPM进行了改进,提高了模型的性能和效率。

  • 2022年 :Diffusion Models Beat GANs on Image Synthesis论文的发表进一步推动了扩散模型的发展,尤其是在显式分类器引导方面的创新。

  • 2023年 :基于CLIP的多模态图像生成技术的出现,如DALL-E和Imagen,显著提升了扩散模型的能力和应用范围。

这些重要进展不仅提高了扩散模型的生成质量,还大大加快了其生成速度,推动了AI作画时代的到来。

正向扩散过程

扩散模型的正向扩散过程是其核心机制之一,它模拟了数据从原始分布到高斯噪声分布的逐渐转变过程。这个过程可以被看作是一个马尔可夫链,每一步都在前一步的基础上添加高斯噪声。

正向扩散过程的数学表示如下:

[q(\mathbf{x}t|\mathbf{x}{t-1}) = \mathcal{N}(\mathbf{x}t; \sqrt{1 - \beta_t}\mathbf{x}{t-1}, \beta_t\mathbf{I})]

其中:

  • (\mathbf{x}_t) :t时刻的样本

  • (\beta_t) :噪声水平参数,随时间增加

  • (\mathbf{I}) :单位矩阵

这个过程的关键特点包括:

  1. 噪声水平逐渐增加 : (\beta_t) 的值随着时间步 (t) 的增加而增大,导致噪声水平逐渐提高。

  2. 均值和方差的变化 :每一步的分布均值为 (\sqrt{1 - \beta_t}\mathbf{x}_{t-1}) ,方差为 (\beta_t\mathbf{I}) 。

  3. 数据的“扩散” :随着时间的推移,原始数据的特征逐渐被噪声掩盖,最终变为标准高斯分布。

正向扩散过程的实际实现通常采用重参数化技巧:

[ \mathbf{x}t = \sqrt{1 - \beta_t}\mathbf{x}{t-1} + \sqrt{\beta_t}\mathbf{z}_{t-1} ]

其中 (\mathbf{z}_{t-1}) 是从标准高斯分布中采样的噪声。

这个过程的重要性在于:

  • 数据增强 :通过逐步添加噪声,扩散模型可以生成更多样化的样本,提高模型的泛化能力。

  • 训练稳定性 :正向扩散过程的设计使得模型的训练更加稳定,降低了模型崩溃的风险。

  • 高分辨率生成 :通过调整扩散步数,可以控制生成样本的分辨率,

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/43268.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Django】教程-1-安装+创建项目+目录结构介绍

欢迎关注我!后续会更新django教程。一周2-3更,欢迎跟进,本周会更新第一个Demo的单独一个模块的增删改查【Django】教程-4-一个增删改查的Demo【Django】教程-2-前端-目录结构介绍【Django】教程-3-数据库相关介绍 1.项目创建 1.1 安装 Djan…

蓝桥杯 之 二分

文章目录 习题肖恩的n次根分巧克力2.卡牌 二分是十分重要的一个算法,常常用于求解一定范围内,找到满足条件的边界值的情况主要分为浮点数二分和整数二分二分问题,最主要是写出这个check函数,这个check函数最主要就是使用模拟的方法…

SpringBoot集成腾讯云OCR实现身份证识别

OCR身份证识别 官网地址&#xff1a;https://cloud.tencent.com/document/product/866/33524 身份信息认证&#xff08;二要素核验&#xff09; 官网地址&#xff1a;https://cloud.tencent.com/document/product/1007/33188 代码实现 引入依赖 <dependency><…

2025年3月电子学会c++五级真题

结绳 #include <bits/stdc.h> using namespace std;int n,a[10010];int main() {cin>>n;for(int i 0;i<n;i){cin>>a[i];}sort(a0,an);//将a数组从小到大排序double sum 0;for(int i 0;i<n;i){sum (suma[i])/2;}cout<<(int)sum;return 0; } 最…

Typora使用Gitee作为图床

Typora使用Gitee作为图床 文章目录 Typora使用Gitee作为图床Gitee准备图床仓库下载安装软件安装插件 配置Typora Gitee准备图床仓库 新建一个仓库右上角下拉->设置->安全设置->私人令牌->生成新令牌&#xff0c;注意将令牌保存&#xff08;只会出现一次&#xff0…

QT音乐播放器(1):数据库保存歌曲

实现功能&#xff1a;用数据库保存本地导入和在线搜索的歌曲记录 目录 一. 保存本地添加的歌曲 1. 使用QSettings &#xff08;1&#xff09;在构造函数中&#xff0c;创建对象。 &#xff08;2&#xff09;在导入音乐槽函数中&#xff0c;保存新添加的文件路径&#xff0c…

SQLAlchemy关键词搜索技术深度解析:从基础过滤到全文检索

在数据驱动的应用开发中&#xff0c;基于关键词的模糊查询是常见的业务需求。SQLAlchemy作为Python生态中最流行的ORM框架&#xff0c;提供了多种实现关键词搜索的技术方案。本文将从性能、适用场景和技术复杂度三个维度&#xff0c;系统对比分析SQLAlchemy中关键词搜索的最佳实…

css属性列举

介绍 CSS word-spacing 属性&#xff0c;用于指定段字之间的空间&#xff0c;例如&#xff1a; p {word-spacing:30px; }word-spacing属性增加或减少字与字之间的空白。 注意&#xff1a; 负值是允许的。 浏览器支持 表格中的数字表示支持该属性的第一个浏览器版本号。 属…

python实现股票数据可视化

最近在做一个涉及到股票数据清洗及预测的项目&#xff0c;项目中需要用到可视化股票数据这一功能&#xff0c;这里我与大家分享一下股票数据可视化的一些基本方法。 股票数据获取 在经过多次尝试后&#xff0c;发现了一个

从 JDK 11 到 JDK 17:OpenRewrite 实战 Spring Boot 升级指南

一、为什么选择 OpenRewrite 升级&#xff1f; 在 Spring Boot 项目升级 JDK 的过程中&#xff0c;我们面临两个核心痛点&#xff1a; 语法兼容性问题&#xff08;如废弃的 API、新的关键字&#xff09;依赖版本冲突&#xff08;特别是 Spring Boot 与 JDK 版本的匹配&#x…

交换技术综合实验

一、实验拓扑 二、实验要求 内网IP地址使用172.16.0.0/16分配。 SW1和SW2之间互为备份。 VRRP/STP/VLAN/Eth-trunk均使用。 所有PC通过DHCP获取IP地址。 ISP只能配置IP地址。 所有电脑可以正常访问ISP路由器。 三、实验步骤 基于172.16.0.0/16进行划分 172.16.2.0/24&…

【Linux】了解基础指令(超详细)

目录 【whoami】指令【pwd】指令【mkdir】指令【touch】指令【ls】指令文件的扩展内容 【cd】指令相对路径和绝对路径(.和..存在的原因)绝对路径相对路径 【rm】指令【man】命令【less】指令echo指令重定向操作追加重定向 cat 指令输入重定向 管道操作(组合指令)查找三剑客find…

基于改进粒子群算法的多目标分布式电源选址定容规划(附带Matlab代码)

通过分析分布式电源对配电网的影响&#xff0c;以有功功率损耗、电压质量及分布式电源总容量为优化目标&#xff0c;基于模糊理论建立了分布式电源在配电网中选址定容的多目标优化模型&#xff0c;并提出了一种改进粒子群算法进行求解。在算例仿真中&#xff0c;基于IEEE-14标准…

26_ajax

目录 了解 接口 前后端交互 一、安装服务器环境 nodejs ajax发起请求 渲染响应结果 get方式传递参数 post方式传递参数 封装ajax_上 封装ajax下 了解 清楚前后端交互就可以写一些后端代码了。小项目 现在写项目开发的时候都是前后端分离 之前都没有前端这个东西&a…

OJ题:移动零

双指针法 c 语言实现 void moveZeroes(int* nums, int numsSize) {int dest,cur; //创建临时指针和目标指针destcur0;//出初始化while(cur<numsSize)//遍历{if(nums[cur]!0){swap(&nums[cur],&nums[dest]);cur;dest;}else{cur;}}} 思路是建立两个指针&#xff0…

Kubernetes对象基础操作

基础操作 文章目录 基础操作一、创建Kubernetes对象1.使用指令式命令创建Deployment2.使用指令式对象配置创建Deployment3.使用声明式对象配置创建Deployment 二、操作对象的标签1.为对象添加标签2.修改对象的标签3.删除对象标签4.操作具有指定标签的对象 三、操作名称空间四、…

命悬生死线:当游戏遭遇DDoS围剿,如何用AI破局?

文章作者&#xff1a;腾讯宙斯盾DDoS防护团队 一、血色战场&#xff1a;DDoS攻击游戏产业的致命瞬间 全球黑色星期五 这是一场波及全球的“黑色星期五”&#xff0c;起初无人察觉&#xff0c;包括小林。 他刚下班到家就迫不及待打开电脑&#xff0c;准备体验期待已久的《黑神话…

【数据结构】[特殊字符] 并查集优化全解:从链式退化到近O(1)的性能飞跃 | 路径压缩与合并策略深度实战

并查集的优化 导读一、合并优化1.1 基本原理1.2 按大小合并1.3 按秩合并1.4 两种合并的区别**1.4.1 核心目标****1.4.2 数据存储****1.4.3 合并逻辑****1.4.4 树高控制****1.4.5 适用场景****1.4.6 路径压缩兼容性****1.4.7 极端案例对比****1.4.8 小结**二、查找优化2.1 路径压…

[python]基于yolov12实现热力图可视化支持图像视频和摄像头检测

YOLOv12 Grad-CAM 可视化工具 本工具基于YOLOv12模型&#xff0c;结合Grad-CAM技术实现目标检测的可视化分析&#xff0c;支持图像、视频和实时摄像头处理。 注意 该项目使用的是yolov12-1.0模型进行测试通过&#xff0c;不是使用turbo模型&#xff0c;且由于yolov12-1.0由于…

进程Kill杀死后GPU显存没有释放仍然被占用,怎么杀死僵尸进程

参考链接&#xff1a; https://blog.csdn.net/qq_37591986/article/details/131118109 使用下面的命令&#xff1a; fuser -v /dev/nvidia0 | awk {print $0} | xargs kill -9一般来说他会杀掉整个用户的所有进程。