知识图谱入门——5:Neo4j Desktop安装和使用手册(小白向:Cypher 查询语言:逐步教程!Neo4j 优缺点分析)

Neo4j简介

Neo4j 是一个基于图结构的 NoSQL 数据库,专门用于存储、查询和管理图形数据。它的核心思想是使用节点、关系和属性来描述数据。图数据库非常适合那些需要处理复杂关系的数据集,如社交网络、推荐系统、知识图谱等领域。

与传统的关系型数据库相比,Neo4j 不仅在查询速度上占有优势,而且可以直观地展示数据之间的复杂关系。

Neo4j 官网下载地址:Neo4j Developer Tools
如果下载较慢,安装包我已经上传到我的资源里

Neo4j安装步骤

1. 安装步骤
安装教程较多,我推荐一篇:
【知识图谱】neo4j桌面版安装与配置(2024年最新最全教程)
最后你可能看见这个页面(用的官方案例):没出现图正常,点击这个就出现了
在这里插入图片描述
在这里插入图片描述

2. 启动 Neo4j

安装完成后,打开 Neo4j Desktop,选择 New Project 创建一个新项目,接着点击 Add Database,选择默认数据库类型。随后,你可以启动这个数据库,并进入 Neo4j 浏览器界面。该浏览器为一个内置的查询工具,可以在其中输入 Cypher 查询语句。


Cypher 查询语言

Cypher 是 Neo4j 提供的声明式查询语言,专门用于操作图数据。它与 SQL 类似,但更加适合图数据库的数据结构,包括节点(Nodes)、关系(Relationships)和属性(Properties)。Cypher 的核心在于通过图模式匹配来查询和操作数据,具有直观的语法设计。

1. 基本概念与术语

在 Cypher 中,数据的结构由 节点(Node)关系(Relationship)属性(Property) 组成。

  • 节点 (Node): 实体,表示图中的对象。使用圆括号 ( ) 来表示。

    • 例:(n) 表示一个节点,(a:Person) 表示类型为 “Person” 的节点。
  • 关系 (Relationship): 两个节点之间的连接。用方括号 [ ] 表示,方向用箭头 -><- 表示。

    • 例:(a)-[r:KNOWS]->(b) 表示节点 a 和节点 b 之间的 “KNOWS” 关系。
  • 属性 (Property): 节点或关系的键值对,用花括号 {} 表示。

    • 例:(a:Person {name: 'Alice', age: 30}) 表示节点 a 有两个属性 nameage

2. 创建数据

Cypher 提供了 CREATE 语句来创建节点、关系及其属性。基本的语法是:

2.1 创建节点

CREATE (n:Label {propertyKey: propertyValue, ...})

例子:

// 创建一个名称为 Alice,年龄为 30 的 "Person" 节点
CREATE (a:Person {name: 'Alice', age: 30});

输入到红框里,点击右面蓝色三角形运行后,会到下方,记录你的每一步操作。
在这里插入图片描述

2.2 创建关系

CREATE (node1)-[relationship:TYPE]->(node2)

例子:

// 创建 Alice 和 Bob 节点之间的关系,表示 Alice 认识 Bob
MATCH (a:Person {name: 'Alice'}), (b:Person {name: 'Bob'})
CREATE (a)-[:KNOWS]->(b);

在这里插入图片描述


3. 查询数据

Cypher 查询的核心是 MATCH 语句,用来匹配图中的模式,并返回相关的节点和关系。基本的语法是:

3.1 查询节点

MATCH (n:Label {propertyKey: propertyValue, ...})
RETURN n;

例子:

// 查询所有名称为 Alice 的 "Person" 节点
MATCH (n:Person {name: 'Alice'})
RETURN n;

3.2 查询关系

MATCH (n1:Label1)-[r:RELATIONSHIP_TYPE]->(n2:Label2)
RETURN n1, r, n2;

例子:

// 查询 Alice 认识谁
MATCH (a:Person {name: 'Alice'})-[:KNOWS]->(b)
RETURN a, b;

在这里插入图片描述

3.3 查询特定属性

可以通过 WHERE 子句来过滤查询结果,类似 SQL 中的 WHERE

MATCH (n:Label)
WHERE n.propertyKey = propertyValue
RETURN n;

例子:

// 查询所有年龄大于 30 的 "Person"
MATCH (n:Person)
WHERE n.age > 30
RETURN n;

在这里插入图片描述


4. 更新数据

Cypher 提供了 SET 语句来更新节点或关系的属性。

4.1 更新节点的属性

MATCH (n:Label {propertyKey: propertyValue, ...})
SET n.propertyKey = newValue
RETURN n;

例子:

// 更新 Alice 的年龄为 35
MATCH (a:Person {name: 'Alice'})
SET a.age = 35
RETURN a;

在这里插入图片描述

4.2 为节点添加新属性

MATCH (n:Label {propertyKey: propertyValue, ...})
SET n.newPropertyKey = newPropertyValue
RETURN n;

例子:

// 为 Alice 添加一个新的属性 country,值为 'USA'
MATCH (a:Person {name: 'Alice'})
SET a.country = 'USA'
RETURN a;

在这里插入图片描述

4.3 更新关系的属性

MATCH (n1)-[r:RELATIONSHIP_TYPE]->(n2)
SET r.propertyKey = newValue
RETURN r;

例子:

// 更新 Alice 和 Bob 之间的认识时间为 2023
MATCH (a:Person {name: 'Alice'})-[r:KNOWS]->(b:Person {name: 'Bob'})
SET r.since = 2023
RETURN r;

在这里插入图片描述


5. 删除数据

Cypher 提供 DELETE 语句来删除节点、关系。

5.1 删除节点

MATCH (n:Label {propertyKey: propertyValue, ...})
DELETE n;

例子:

// 删除 Alice 节点
MATCH (a:Person {name: 'Alice'})
DELETE a;

注意:删除节点时,如果节点还有关系存在,Neo4j 会抛出错误,必须先删除相关的关系。
在这里插入图片描述

5.2 删除关系

MATCH (n1)-[r:RELATIONSHIP_TYPE]->(n2)
DELETE r;

例子:

// 删除 Alice 和 Bob 之间的认识关系
MATCH (a:Person {name: 'Alice'})-[r:KNOWS]->(b:Person {name: 'Bob'})
DELETE r;

在 Neo4j 中,如果你想删除数据库中的所有数据,可以使用 MATCH 语句结合 DELETE 操作,删除所有的节点及其关联的关系。以下是具体步骤:
在这里插入图片描述

5.3. 删除所有关系

在 Neo4j 中,节点之间的关系是必须先删除的,才能删除节点。可以通过以下命令删除图中的所有关系:

MATCH ()-[r]-()
DELETE r;

此语句会匹配数据库中的所有关系 [r] 并删除它们。这里的 ( )-[r]-( ) 表示图中的所有节点之间的关系。

5.4. 删除所有节点

关系删除后,可以删除所有节点。使用以下命令:

MATCH (n)
DELETE n;

此命令将删除数据库中的所有节点 (n)


一步完成:删除所有节点和关系

可以将以上两步合并成一步,直接删除图中所有的数据(节点及其关系):

MATCH (n)
DETACH DELETE n;

DETACH DELETE 会自动删除节点和所有相关的关系,因此可以一步删除整个数据库的数据。

注意
  • 执行 DETACH DELETE 会彻底清空数据库中的所有数据,这个操作是不可逆的。
  • 该操作适合于开发或测试环境,避免在生产环境误操作。

6. 合并数据 (MERGE)

MERGE 语句用于查找或创建节点或关系。如果图中不存在匹配的节点或关系,MERGE 会创建它们;如果已经存在,则不会创建。

MERGE (n:Label {propertyKey: propertyValue, ...})

例子:

// 如果图中没有名为 Charlie 的 "Person" 节点,则创建一个
MERGE (c:Person {name: 'Charlie'});

在这里插入图片描述


7. 聚合函数与分组查询

Cypher 提供了许多聚合函数,如 COUNT, SUM, AVG, MIN, MAX,并支持使用 WITH 子句进行分组。

7.1 计数节点

MATCH (n:Label)
RETURN COUNT(n);

例子:

// 统计 "Person" 节点的数量
MATCH (p:Person)
RETURN COUNT(p);

在这里插入图片描述

7.2 按属性分组

MATCH (n:Label)
WITH n.propertyKey AS groupKey, COUNT(n) AS count
RETURN groupKey, count;

例子:

// 按年龄分组,统计每个年龄的人数
MATCH (p:Person)
WITH p.age AS age, COUNT(p) AS count
RETURN age, count;

在这里插入图片描述


8. 路径查询

在图数据库中,路径 是一个非常重要的概念。Cypher 可以查询节点之间的路径及其长度。

MATCH path = (n1)-[r*..length]-(n2)
RETURN path;

例子:

// 查找 Alice 和 Bob 之间所有长度不超过 3 的路径
MATCH path = (a:Person {name: 'Alice'})-[*..3]-(b:Person {name: 'Bob'})
RETURN path;

在这里插入图片描述


9. 深度查询与递归关系

通过使用 * 可以进行递归查询。例如,查询两个节点之间的多级关系。

MATCH (n1)-[r*..depth]->(n2)
RETURN n1, r, n2;

例子:

// 查找 Alice 认识的所有人及其认识的人的关系
MATCH (a:Person {name: 'Alice'})-[*..2]-(b)
RETURN a, b;

在这里插入图片描述


Cypher 总结(为了你能回答别人)

Cypher 作为 Neo4j 的查询语言,专注于图形数据的直观查询和操作。其简洁、强大的语法,使得开发者能够高效地进行复杂的关系分析。在大规模知识图谱、社交网络和推荐系统等场景中,Cypher 的图模式匹配能力为数据分析提供了不可替代的优势。

Cypher 的灵活性使得图查询可以非常高效地与业务需求结合,尤其是在需要探索复杂关系链时,它的表现尤为出色。

Cypher高阶用法

知识图谱入门——6:Cypher 查询语言高级组合用法(查询链式操作、复杂路径匹配、条件逻辑、动态模式创建,以及通过事务控制和性能优化处理大规模数据。

总结

Neo4j 的出现填补了传统关系型数据库在复杂关系处理上的不足,特别是在知识图谱构建和图分析任务中,它展现出独特的优势。传统关系型数据库虽然能通过表结构和外键管理关系数据,但在处理深层次和复杂关系查询时性能较差。而 Neo4j 通过其图形化的数据模型,专注于关系的高效存储与查询,能够以直观的方式呈现复杂的数据实体与其间的关联。

在知识图谱构建中,数据通常高度互联,需要处理多跳关系查询和复杂的推理任务。Neo4j 的图遍历算法和灵活的 Cypher 查询语言大大简化了这些任务,开发者可以轻松表达和探索图中的复杂结构。这为快速挖掘隐藏在数据中的深层次知识和模式提供了强有力的支持。

然而,Neo4j 也有其局限性,特别是在大规模数据的写入场景中。图数据库的结构要求在插入数据时进行更多的图关系维护,这导致其写入性能相对较弱。此外,由于每个节点和关系都有额外的元数据存储需求,存储空间开销也较大。这意味着在构建大规模动态数据系统时,开发者可能需要权衡写入效率与查询性能,或结合其他大数据技术进行优化。

以下是 Neo4j 在功能表现上的优缺点分析:

功能优点不足
关系查询高效,多跳查询快速大规模写入性能不佳
数据模型直观,易理解存储空间开销较大
社区支持丰富API,活跃社区事务一致性稍弱
扩展能力灵活的扩展机制分布式支持相对有限
学习成本图形化表达直观Cypher 学习要求较高

在大数据时代,Neo4j 的优势特别体现在需要快速挖掘复杂关系和构建知识网络的场合,尤其是大规模数据关联性强的场景中。作为图谱开发者,我认为 Neo4j 最理想的应用场景是在知识图谱、社交网络分析、推荐系统等复杂关系密集的领域。通过其高效的关系查询和直观的数据建模,开发者可以快速发现数据中的潜在模式和知识关联。

但对于涉及频繁大量写入的数据场景,性能可能成为瓶颈,尤其是在处理实时动态数据时,需要结合诸如 Kafka、Spark 这样的技术来处理高并发写入需求,确保系统的整体性能和稳定性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/441223.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

erlang学习:Linux命令学习9

sed命令介绍 sed全称是&#xff1a;Stream EDitor&#xff08;流编辑器&#xff09; Linux sed 命令是利用脚本来处理文本文件&#xff0c;sed 可依照脚本的指令来处理、编辑文本文件。Sed 主要用来自动编辑一个或多个文件、简化对文件的反复操作、编写转换程序等 sed 的运行…

Windows环境下使用Docker配置MySQL数据库

用Docker配置数据库&#xff0c;无论是做开发&#xff0c;还是做生产部署&#xff0c;都非常的方便 它不需要单独安装数据库&#xff0c;也不用担心出现各种环境的配置问题。 本文将分享用Docker配置数据库的步骤&#xff0c;这里用MySQL举例。 其他的数据库如MSSQL&#xf…

信息学奥赛复赛复习14-CSP-J2021-03网络连接-字符串处理、数据类型溢出、数据结构Map、find函数、substr函数

PDF文档回复:20241007 1 P7911 [CSP-J 2021] 网络连接 [题目描述] TCP/IP 协议是网络通信领域的一项重要协议。今天你的任务&#xff0c;就是尝试利用这个协议&#xff0c;还原一个简化后的网络连接场景。 在本问题中&#xff0c;计算机分为两大类&#xff1a;服务机&#x…

12.3 Linux_进程间通信_信号机制

概述 什么是信号&#xff1a; 信号是在软件层次上对中断机制的模拟&#xff08;软中断&#xff09;&#xff0c;是一种异步通信方式。 进程对信号的响应方式&#xff1a; 缺省方式&#xff1a;根据默认行为响应信号忽略信号&#xff1a;不响应信号捕捉信号&#xff1a;根据…

SpringBoot系列 启动流程

文章目录 SpringApplicationSpringApplication#run 启动流程BootstrapContextSpringApplicationRunListenersprepareEnvironmentconfigureEnvironmentconfigurePropertySourcesconfigureProfiles 上下文初始化prepareContextrefreshContextprepareRefreshobtainFreshBeanFactor…

MISC - 第13天(python脚本 重命名文件,拼接二维码,cloacked-pixel工具,中文电码,五笔编码)

前言 各位师傅大家好&#xff0c;我是qmx_07&#xff0c;今天继续讲解MISC的相关知识 [安洵杯 2019]吹着贝斯扫二维码 附件信息: 使用APCHPR暴力破解工具&#xff0c;flag.zip 破解失败可能线索在其他文件&#xff0c;放到hxd查看 在hxd中&#xff0c;发现该文件头JFIF 是j…

晶体规格书及匹配测试

一、晶体参数介绍 晶体的电气规格相对比较简单,如下: 我们逐一看看每个参数, FL就是晶体的振动频率,这个晶体是24.576MHz的。 CL就是负载电容,决定了晶体频率是否准确,包括外接的实际电容、芯片的等效电容以及PCB走线的寄生电容等,核心参数。 Frequency Tolerance是…

matlab碳交易机制下考虑需求响应的综合能源系统优化运行

目录 1 主要内容 架构模型&#xff1a; 需求响应模型&#xff1a; 目标函数&#xff1a; 对比算例设计&#xff1a; 2 部分程序 3 程序结果 4 下载链接 1 主要内容 该程序复现文献《碳交易机制下考虑需求响应的综合能源系统优化运行》&#xff0c;解决碳交易机制下考虑…

工业缺陷检测深度学习方法

工业缺陷检测深度学习方法 基于深度学习的工业缺陷检测方法可以降低传统人工质检的成本, 提升检测的准确性与效率, 因而在智能制造中扮演重要角色, 并逐渐成为计算机视觉领域新兴的研究热点之一. 其被广泛地应用 于无人质检、智能巡检、质量控制等各种生产与运维场景中. 本综述…

Spring Boot驱动的足球青训俱乐部管理解决方案

1 绪论 1.1研究背景 随着科技的发展&#xff0c;计算机的应用&#xff0c;人们的生活方方面面都和互联网密不可分。计算机的普及使得人们的生活更加方便快捷&#xff0c;网络也遍及到我们生活的每个角落&#xff0c;二十一世纪信息化时代的到来&#xff0c;随着社会科技的不断…

241007深度学习之LeNet

目录 1.LeNet介绍2.组成3.代码实现 1.LeNet介绍 LeNet是最早发布的卷积神经网络之一,他是由AT&T贝尔实验室的研究员Yann LeCun在1989年提出的(并且以其命名),目的是识别图像中手写数字.当时,Yann LeCun发表了第一篇通过反向传播成功训练卷积神经网络的研究论文,这项工作代…

关于CSS Grid布局

关于CSS Grid布局 实际效果参考 参考代码 <template><view class"baseInfo"><up-image class"cover" height"160rpx" width"120rpx" :src"bookInfo.cover"><template #error><view style"…

基于Zynq SDIO WiFi移植二(支持2.4/5G)

1 SDIO设备识别 经过编译&#xff0c;将移植好的uboot、kernel、rootFS、ramdisk等烧录到Flash中&#xff0c;上电启动&#xff0c;在log中&#xff0c;可看到sdio设备 [ 1.747059] mmc1: queuing unknown CIS tuple 0x01 (3 bytes) [ 1.761842] mmc1: queuing unknown…

卫星测绘AI技术-立哥尖端科研

分布式微波干涉测绘卫星是以多颗满足一定编队构形的卫星为平台&#xff0c;以合成孔径雷达 和高精度星间相对状态测量设备等为有效载荷&#xff0c;具备全天时、全天候获取雷达干涉影像数 据&#xff0c;快速测制全球数字表面模型、数字雷达正射影像等测绘产品能力的卫星系统…

点可云ERP进销存V8版本——其他支出单使用说明

其他支出单用于记录除采购内容外其支出资金&#xff0c;如&#xff1a;人工运输费、安装维修服务、差旅报销等。新增保存之后&#xff0c;对应资金账户将减少金额额度&#xff0c;并做存储记录&#xff0c;可在现金银行报表中体现。 新增操作 接下来我们讲解新增单据步骤。如上…

PHP 基础语法详解

PHP 基础语法详解 PHP&#xff08;全称&#xff1a;PHP: Hypertext Preprocessor&#xff09;是一种广泛应用的服务器端脚本语言&#xff0c;特别适用于 Web 开发。它易于学习&#xff0c;且能够快速构建动态网站。本篇博客将详细介绍 PHP 的基础语法&#xff0c;帮助初学者理…

[OS] 编译 Linux 内核

编译 Linux 内核&#xff1a;详细教程与 Kthreads 入门结合 我们将学习如何编译 Linux 内核&#xff0c;同时结合 Kthreads 的知识来理解各个步骤的目的。对于虚拟环境下的开发环境配置&#xff0c;本文将为你提供逐步指导。 1. 下载内核源代码 首先&#xff0c;我们需要从官…

第 1 章 MyBatis快速入门

1.1 ORM简介 ORM&#xff08;Object Relational Mapping&#xff0c;对象——关系映射&#xff09;框架的主要功能是根据映射配置文件&#xff0c;完成数据在对象模型与关系模型之间的映射&#xff0c;同时出屏蔽了连接数据库、创建 Statement 对象、执行 SQL、读取 ResultSet…

(Linux驱动学习 - 8).信号异步通知

一.异步通知简介 1.信号简介 信号类似于我们硬件上使用的“中断”&#xff0c;只不过信号是软件层次上的。算是在软件层次上对中断的一种模拟&#xff0c;驱动可以通过主动向应用程序发送信号的方式来报告自己可以访问了&#xff0c;应用程序获取到信号以后就可以从驱动设备中…

【技术】Jaskson的序列化与反序列化

文章目录 概念解释1.Jasksona.JSONJSON 的基本特点JSON 的基本结构JSON 示例 b.ObjectMapper类 2.序列化与反序列化a.序列化对象序列化集合序列化ListSetMap b.反序列化反序列化单个对象反序列化集合对象 概念解释 1.Jaskson Jackson 是一个用于处理 JSON 数据的 Java 库,所以…