音频模型介绍

在处理音频数据方面,有多种模型表现出色,它们在不同的音频处理任务上有着各自的优势:

  1. 自动编码器:包括多通道变分自动编码器、自回归模型和生成对抗网络等,这些模型在音乐生成领域取得了令人印象深刻的成果。

  2. 深度生成模型:这些模型结合了深度神经网络与传统生成模型,如语音生成的源滤波器模型和谐波+噪声模型,展现出极大的潜力。

  3. 半监督学习(SSL)方法:例如Deep Co-Training (DCT)、Mean Teacher (MT)、MixMatch (MM)、ReMixMatch (RMM)和FixMatch (FM),这些方法通过整合未标记数据来减少对标记数据的依赖,已经在音频分类任务上显示出显著的性能。

  4. AudioBench:这是一个通用的音频大型语言模型(AudioLLMs)基准测试,涵盖了多种任务和数据集,用于评估模型在音频处理方面的能力。

  5. AudioPaLM:这是一个基于PaLM和PaLM-2的多模态生成模型,能够执行包括语音到语音翻译(S2ST)在内的多项任务。

  6. VioLA:这是一个基于自回归方法的多语言多模态语言模型,擅长处理与语音相关的任务,并且能够进行语音翻译。

  7. ComSL:这是一个通过复合架构构建的新型语音-语言模型,它利用预训练的语音和语言模型,优化了口语语言任务中的数据使用。

  8. SpeechGen:这是一个统一的框架,能够利用大约1000万个可训练参数来增强语音-语言模型在多种生成任务中的表现。

  9. WavJourney:这是一个创新的方法,用于从文本故事叙述中生成全面的音频内容,包括语音、音乐和音效。

  10. MusicLDM:这是一个为音乐生成从文本输入量身定制的模型,其概念基础在于Stable Diffusion、对比语言音频预训练模型(CLAP)和Hifi-GAN声码器。

  11. UniAudio:这是一个使用语言建模来生成包括语音、声音、音乐和唱歌在内的各种音频类型的模型,能够通过引入多尺度Transformer模型来提高自回归预测速度。

这些模型在音频处理的不同领域,如语音识别、音频分类、音乐生成、语音合成等方面都有着显著的表现和应用。

1、研究进展

音频模型的最新研究进展涵盖了多个领域,包括音频生成、语音识别、音频字幕、音频修复等。以下是一些重要的研究进展:

  1. 音频语言模型的语义完整性:研究者们提出了X-Codec,这是一种新的音频编解码器,它在残差向量量化(RVQ)阶段之前引入了预训练的语义编码器的语义特征,并在RVQ之后引入了语义重构损失。这种方法显著降低了语音合成任务中的字错误率(WER),并扩展到非语音应用,包括音乐和声音生成。

  2. 音频字幕的耳语转换器:通过使用预训练的语音到文本Whisper模型和预训练合成字幕,研究者们在音频字幕领域取得了进展。他们的研究结果表明,不同的训练策略对音频字幕模型的性能有显著影响。

  3. 大型音频模型的综述:一篇综述论文提供了对大型语言模型在音频信号处理领域应用的最新进展和挑战的全面概述。这些模型在自动语音识别、文本到语音和音乐生成等多种音频任务中表现出色。

  4. UniAudio系统:这是一个音频基础模型,能够生成多种类型的音频(包括语音、声音、音乐和唱歌),给定输入条件。UniAudio通过LLM技术,将所有类型的目标音频与其他条件模态进行标记化,然后将源-目标对作为单个序列进行连接,并使用LLM进行下一个标记预测。

  5. 基于扩散的音频修复:这项研究探讨了深度学习的最新进展,特别是音频修复任务的扩散模型。所提出的方法使用无条件训练的生成模型,可以以zero-shot方式进行音频修复,为再生任意长度的间隙提供高度灵活性。

  6. 神经音频编解码器(Neural Audio Codecs):神经音频编解码器最初被引入以压缩音频数据,减少传输延迟。研究人员发现,编解码器可以作为将连续音频转换为离散代码的合适标记器,这可以用于开发音频语言模型(LMs)。例如,Encodec 是一个相对SoundStream使用更复杂精细结构的编解码器,它通过结合卷积、LSTM和Transformer来优化量化单元,以减少带宽。它由编码器、量化器和解码器三部分组成,目标函数考虑了重建损失、对抗损失、量化损失和Transformer损失。

  7. 音频语言模型(Audio Language Models):AudioLM 是一个用于生成音频的模型,它保持了一致性和高音质。该模型只需要3秒的语音作为提示,即可生成训练期间未见过的语音,并保持说话人的声音、韵律和录音条件(混响、噪音)。其贡献主要在于在大模型训练中解耦了语义标记和声学标记。

  8. 语音识别和音频处理:大型音频模型,如SeamlessM4T,已经开始展示作为通用翻译器的能力,支持多达100种语言的多种语音任务,而不需要依赖于单独的任务特定系统。此外,还有研究通过结合音频编码器和增强罕见词识别和多语言转录的策略,展示了在语音处理任务中的潜力。

  9. 神经语音合成(Neural Speech Synthesis):神经语音合成,也称为神经文本到语音(TTS),是研究的重要领域,旨在从文本生成类似人类的语音。传统的TTS系统架构复杂,但随着深度端到端TTS架构的出现,这些系统的复杂性得到了克服。

  10. 音频特征学习:SSM-Net是一种新的音频特征学习方法,用于音乐结构分析(MSA)。该方法通过训练深度编码器来学习特征,使得从这些特征得到的自相似矩阵(SSM)近似于地面真实SSM。

  11. 半监督自动语音识别:半监督学习方法,如交替伪标记法,通过利用未标记数据来提高自动语音识别的性能,这种方法在半监督学习领域显示出了潜力。

  12. 多模态处理:大型音频模型不仅在处理音频信号方面取得了进展,还在多模态处理方面展现了能力,例如通过结合视觉和音频信息来提高语音识别的准确性。

这些研究进展表明,音频模型正在快速发展,特别是在提高语义完整性、处理多模态数据和生成高质量音频方面。随着技术的不断进步,未来可能会出现更多创新的应用案例。

神经音频编解码器

神经音频编解码器(Neural Audio Codecs)是近年来音频处理领域的一个热点研究方向,它们通过使用深度学习技术来压缩和重建音频信号,以实现高保真的音频传输和存储。以下是一些最新的研究进展:

  1. Encodec:由Meta AI提出的Encodec是一种神经网络音频编解码方法,它在效果上优于Google的SoundStream。Encodec采用了Encoder-Decoder结构和VQ(向量量化)方法,通过结合卷积、LSTM和Transformer来优化量化单元,以减少带宽。Encodec的模型结构包括编码器、量化器和解码器三部分,目标函数考虑了重建损失、对抗损失、量化损失和Transformer损失。Encodec在多个音频压缩比和采样率条件下,在语音和音乐的压缩中均达到了最先进的质量水平。它还引入了GAN的思想,通过判别器网络提高解码恢复的音频质量,并引入熵编码和实时模式流的控制来提高压缩效率。

  2. SNAC (Multi-Scale Neural Audio Codec):SNAC是一种新的神经音频编解码器,它通过在不同时间分辨率下操作的量化器来实现。这种方法通过在多个时间尺度上适应音频结构,从而实现更有效的压缩。SNAC在音乐和语音领域的压缩效率都超过了现有的最先进编解码器,能够在更低的比特率下提供更高的音频质量。

  3. SoundStream:SoundStream是一个端到端的神经音频编解码器,它通过提供高感知质量的音频,同时在低到中等比特率下运行。SoundStream利用了神经音频合成的最新解决方案,并引入了一个新的可学习量化模块。它的模型架构包括一个全卷积编码器,它接收时域波形作为输入,并以较低的采样率生成一系列嵌入,这些嵌入由残差向量量化器量化。然后,一个全卷积解码器接收量化嵌入并重建原始波形的近似值。SoundStream通过混合重建和对抗性损失进行端到端训练。

这些进展表明,神经音频编解码器能够在保持高音频质量的同时,显著降低所需的带宽和存储空间,这对于实时音频通信、音频流媒体服务和移动设备上的音频应用等领域具有重要意义。随着研究的深入,未来我们可能会看到更多创新的神经音频编解码器技术,进一步提高音频处理的效率和质量。

2、实时语音处理技术应用前景

实时语音处理技术在近年来取得了显著的发展,并且在多个领域展现出广阔的应用前景。以下是一些关键点,概述了实时语音处理技术的应用前景和技术发展:

  1. 人机对话交互:自回归语音识别模型能够显著降低系统延迟,在非流式识别场景中具有重要应用价值。同时,对话系统的性能有望通过结合多模态预训练模型得到提升,这将是未来值得探索的方向。

  2. 实时API的发展:OpenAI发布的实时API,基于GPT-4o的语音到语音的AI应用和智能体,展示了实时语音交互能力的进步。GPT-4o的平均响应时间达到320毫秒,接近人类真实对话的反应速率,预示着基于声音的实时对话式AI场景将变得更加重要。

  3. 公网对讲市场:公网对讲技术通过实现实时语音通讯,提高协作效率,降低物流成本。随着技术不断创新,公网对讲将更加智能化、便捷化、安全化,应用场景也将不断丰富,如无人机通讯、智能家居、物联网等领域。

  4. 实时音视频行业:实时音视频技术的应用场景正在从消费互联网向产业互联网渗透,支持全链路数据加密,兼具数据安全保障和个人隐私保护功能。在金融、医疗等传统行业重点场景的应用效能也在逐渐扩大。

  5. 智能语音转写:智能语音转写产品如语音助手、语音转写、智能客服等取得产品价值突破或商业上的显著成就。随着语音识别准确性及效率的提升,以及上下文纠正、标点过滤等功能的优化,智能语音转写服务的商业化落地与多场景复用持续推进。

  6. 大模型技术:大模型技术在语音识别领域取得了重要成果,如基于深度神经网络的语音识别系统,实现了高准确率的语音识别。未来,研究者们将致力于开发更高效的算法和硬件,降低大模型技术的应用门槛。

  7. 语音合成技术:语音合成技术,又称文本到语音(TTS)技术,是将输入的文本转换成自然流畅的语音输出的过程。随着深度学习技术的不断发展,语音合成技术取得了显著进步,合成的语音质量越来越高,接近甚至超越人类自然语音。

  8. 语音识别技术:语音识别技术的发展一直在不断地推进,声学模型和语言模型的不断优化,数据集的不断扩充,实时性的提高,以及应用场景的拓展,都是语音识别技术发展的现状。

综上所述,实时语音处理技术在提高人机交互的自然度、提升服务效率、增强数据安全性等方面具有巨大的潜力,预计在未来将在更多领域得到广泛应用。

3、创新应用

结合AI的实时语音处理技术在多个领域都有创新应用,以下是一些案例:

  1. 视频剪辑软件中的AI配音:例如必剪app提供了AI配音功能,用户可以为视频添加个性化的语音,使视频内容更加生动有趣。

  2. 智能工牌解决方案:普强AI推出的智能工牌解决方案,利用AI算法进行实时数字化分析,结合声源收录、声音信息转写与提取、数据分析等功能,实现实时拾音、上传、分析和后台上屏,提升了营销服务能力。

  3. AI语音合成技术:NVIDIA推出了基于深度学习的AI语音合成技术,生成高质量的人类声音。这项技术在医疗、金融、电子商务和交通等行业有广泛的应用前景。

  4. 实时语音转文字技术:基于Faster-Whisper的高效解决方案,支持多种Whisper模型,提供实时音频可视化和WebSocket集成,应用于实时会议转录、媒体内容制作、客户服务优化、教育辅助工具和医疗记录等场景。

  5. 跨境电商语音识别与翻译:AI技术在跨境电商中提供实时的语音识别和翻译服务,帮助企业跨越语言障碍,提供实时客服助手、商品描述翻译和语音搜索功能。

  6. AI英语教练:英吹思听是一款基于智能眼镜的AI英语教练,通过日常对话形式帮助用户学习英语,展现了voice AI在实时语境制造中的关键作用。

  7. 语音合成技术:在AIGC(人工智能生成内容)中,语音合成技术从自然语音到个性化生成,应用于虚拟人主播、自动化客服、游戏及娱乐领域等。

  8. AI工具合集中的语音应用:包括Resemble、Broadn、Podcast、Fliki等工具,用于语音合成、自然语言处理、音频转录和编辑等,应用于语音助手、虚拟主持人、有声书籍、电话系统、客户服务等场景。

  9. 落地的AI场景应用:语音识别技术在智能语音助手、语音翻译、语音搜索、智能客服等领域的应用,以及语音合成技术在智能客服、汽车导航、语音报时等场景的应用。

这些案例展示了AI在实时语音处理领域的广泛应用和创新潜力。随着技术的不断进步,未来可能会出现更多创新的应用案例。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/463690.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

告别枯燥数据!20种色彩缤纷的数据可视化图表任你选,轻松应对各种场景

我们每天都在和各种数据打交道,单纯的一串串数字,看着就头疼。如果数据不再是枯燥的表格,而是变成了色彩鲜艳的柱状图、线条流畅的折线图,或者是直观易懂的饼图,让用户一眼Get到重点,让老板为你的汇报方案鼓…

C++和OpenGL实现3D游戏编程【连载17】——着色器进阶(附源码)

🔥C++和OpenGL实现3D游戏编程【目录】 1、本节要实现的内容 在前面着色器初步一节我们了解了着色器的一些初步知识,通过顶点着色器和片段着色器显示出了一个彩色的立方体。我们这节课就来了解一些在着色器中显示纹理等一系列实用操作,同时了解一些进阶的图像渲染技术,比如…

散热器为什么要加风扇:【图文讲解】

前面我们聊到了TEC散热器中,TEC的工作原理,也大概聊了一下热的整个传递过程。TEC散热器在工作的时候,会产生冷热两个端面,核心工作原理是通电后TEC把冷端的热量搬移到热端。这样把TEC散热器的冷端放置在需要散热的器件表面&#x…

HO-XGBoost河马算法优化极限梯度提升树多变量回归预测(Matlab)

HO-XGBoost河马算法优化极限梯度提升树多变量回归预测(Matlab) 目录 HO-XGBoost河马算法优化极限梯度提升树多变量回归预测(Matlab)预测效果基本介绍程序设计参考资料 预测效果 基本介绍 Matlab实现HO-XGBoost多变量回归预测&…

Zookeeper 简介 | 特点 | 数据存储

1、简介 zk就是一个分布式文件系统,不过存储数据的量极小。 1. zookeeper是一个为分布式应用程序提供的一个分布式开源协调服务框架。是Google的Chubby的一个开源实现,是Hadoop和Hbase的重要组件。主要用于解决分布式集群中应用系统的一致性问题。 2. 提…

[5] 一篇文章教会你如何实现端口敲门

文章目录 1. 描述2. 基本原理3. 优点4. 缺点5. 实现过程6. firewall-cmd命令介绍7. 写到最后 1. 描述 端口敲门技术(Prot Knocking)技术,用于通过一系列预定的端口来动态地打开防火墙或访问特定服务甚至执行一小段任务,用于增强系统地安全性,…

TensorRT-LLM的k8s弹性伸缩部署方案

Scaling LLMs with NVIDIA Triton and NVIDIA TensorRT-LLM Using Kubernetes | NVIDIA Technical Blog 一共涉及4个k8s组件: 1. Deployment:跑起来N个pod;指定NVIDIA官方的triton&trt-llm的docker image,指定好model放在哪个…

Chainlit集成LlamaIndex实现知识库高级检索(HyDE查询重写转换)

检索原理 HyDEQueryTransform 是一种用于信息检索系统中的查询转换技术,它基于假设文档嵌入(Hypothetical Document Embeddings,简称HyDE)的概念,旨在通过生成假设文档来改善查询与文档之间的语义对齐,进而…

使用Markdown编写适用于GitHub的README.md文件的目录结构

文章目录 [toc] 顶部1. 使用[TOC]自动生成2. VSCode中的插件3. 手搓目录目录相关资料本文相关代码一、概述1.1 基本概念1.2 两种处理模型(1)微批处理(2)持续处理 1.3 Structured Streaming和Spark SQL、Spark Streaming关系 二、编…

[ shell 脚本实战篇 ] 编写恶意程序实现需求(恶意程序A监测特定目录B出现特定文件C执行恶意操作D-windows)

🍬 博主介绍 👨‍🎓 博主介绍:大家好,我是 _PowerShell ,很高兴认识大家~ ✨主攻领域:【渗透领域】【数据通信】 【通讯安全】 【web安全】【面试分析】 🎉点赞➕评论➕收藏 养成习…

攻克数字工具(GKData)在推动 AI 发展中的关键作用

摘要:本文深入探讨了攻克数字工具(GKData)对人工智能(AI)发展的重要推动作用,同时阐述了人工智能技术的发展历程、现状、应用领域和前景。分析了 GKData 在数据处理、模型训练与优化、算法创新等方面为 AI …

Golang文件操作

1.文件介绍:文件是数据源,主要作用是保存数据 2.文件在程序中是以流的形式来操作的 对文件的操作主要用File(os包)结构体来实现 文件的基本操作 1)打开一个文件进行读操作: os.Open(name string)(*File,error) 2)关…

WebSocket的理解与应用

WebSocket的理解与应用 一、是什么二、特点1、全双工2、二进制帧3、协议名4、握手5、优点 三、应用场景 一、是什么 WebSocket,是一种网络传输协议,位于OSI模型的应用层。可在单个TCP连接上进行全双工通信,能更好的节省服务器资源和带宽并达…

【补题/atccoder】Toyota Programming Contest 2024#7(AtCoder Beginner Contest 362)

A、买笔 思路&#xff1a; 输入红绿蓝三只笔价格&#xff0c;再输入不喜欢颜色&#xff0c; 输出除不喜欢颜色笔以外最低价格 代码如下&#xff1a; #include <iostream> #include <algorithm> using namespace std;int main() {int r, g, b;cin >> r >&…

【含开题报告+文档+源码】基于Web的房地产销售网站的设计与实现

开题报告 随着经济的发展和城市化进程的加速&#xff0c;房地产市场逐渐成为人们关注的焦点。然而&#xff0c;传统的房地产销售模式存在很多问题&#xff0c;如信息不透明、交易过程繁琐、无法满足个性化需求等。这些问题不仅影响了消费者的购房体验&#xff0c;也制约了房地…

网络层3——IP数据报转发的过程

目录 一、基于终点的转发 1、理解 2、IP数据报转发过程 二、最长前缀匹配 1、理解 2、主机路由 3、默认路由 三、二叉线索查找 一、基于终点的转发 1、理解 理解什么叫终点转发 IP数据报的传递&#xff0c;交给路由器后 可不可以做到直接发送给目的主机呢&#xff1f;…

【LwIP源码学习4】主线程tcpip_thread

前言 本文对lwip的主要线程tcpip_thread进行分析。 正文 tcpip_thread是lwip最主要的线程&#xff0c;其创建在tcpip_init函数中 sys_thread_new(TCPIP_THREAD_NAME, tcpip_thread, NULL, TCPIP_THREAD_STACKSIZE, TCPIP_THREAD_PRIO);tcpip_init函数被TCPIP_Init函数调用。…

前端的导入导出「CommonJS」「ES Module」模块化规范

模块化开发有助于我们将代码进行拆分&#xff0c;便于开发和维护&#xff0c;但如果不清楚模块化规范&#xff0c;就会在开发时不知道该用 require 还是 import&#xff0c;导出时该用 export 还是 module.exports 参考博主文章

CoEdge: 面向自动驾驶的协作式边缘计算系统,实现分布式实时深度学习任务的高效调度与资源优化

文章导读 CoEdge系统的构思基于边缘计算的发展&#xff0c;这一分布式计算范式将服务从云端推向网络边缘&#xff0c;以支持各种物联网应用&#xff0c;如智能交通和自动驾驶。随着通信技术的进步&#xff0c;出现了新的协作边缘系统&#xff0c;多个边缘节点可以通过本地点对…

操作系统进程的描述与控制知识点

前趋图和程序执行 前趋图 定义&#xff1a; 前趋图是指一个有向无循环图&#xff0c;可记为 DAG&#xff0c;它用于描述进程之间执行的先后顺序图形表示&#xff1a; 程序的执行 程序顺序执行时&#xff0c;系统资源的利用率很低 程序顺序执行时的特征 顺序性封闭性可再现性 …