【Python TensorFlow】进阶指南(续篇一)

在这里插入图片描述

在前两篇文章中,我们介绍了TensorFlow的基础知识及其在实际应用中的初步使用,并探讨了更高级的功能和技术细节。本篇将继续深入探讨TensorFlow的高级应用,包括但不限于模型压缩、模型融合、迁移学习、强化学习等领域,帮助读者进一步掌握TensorFlow的全面应用。

1. 模型压缩与量化

1.1 模型量化

模型量化可以减少模型的大小和计算复杂度,使其更适合在边缘设备上运行。量化通常涉及将浮点数权重转换为较低位宽的整数表示。

import tensorflow as tf
from tensorflow.keras import layers# 创建模型
model = tf.keras.Sequential([layers.Dense(64, activation='relu', input_shape=(10,)),layers.Dense(64, activation='relu'),layers.Dense(10, activation='softmax')
])# 编译模型
model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy'])# 训练模型
model.fit(x_train, y_train, epochs=5)# 导入量化工具
quantize_model = tf.keras.Sequential([tfmot.quantization.keras.quantize_annotate_layer(layer) for layer in model.layers
])# 应用量化方案
quantize_model = tfmot.quantization.keras.quantize_apply(quantize_model)# 重新编译模型
quantize_model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy'])# 量化训练
quantize_model.fit(x_train, y_train, epochs=5)

1.2 模型剪枝

模型剪枝是一种减少模型复杂度的技术,通过移除权重较小的连接来降低模型的参数数量。

import tensorflow_model_optimization as tfmot# 创建剪枝模型
prune_low_magnitude = tfmot.sparsity.keras.prune_low_magnitude# 创建模型
model = tf.keras.Sequential([prune_low_magnitude(layers.Dense(64, activation='relu', input_shape=(10,))),prune_low_magnitude(layers.Dense(64, activation='relu')),prune_low_magnitude(layers.Dense(10, activation='softmax'))
])# 编译模型
model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy'])# 设置剪枝配置
pruning_params = {'pruning_schedule': tfmot.sparsity.keras.PolynomialDecay(initial_sparsity=0.50,final_sparsity=0.90,begin_step=0,end_step=np.ceil(1.6 * len(x_train)),frequency=100)
}# 应用剪枝
model = tf.keras.Sequential([tfmot.sparsity.keras.prune_low_magnitude(layer, **pruning_params) for layer in model.layers
])# 训练剪枝后的模型
model.fit(x_train, y_train, epochs=5)
2. 模型融合与集成

2.1 Stacking Ensemble

Stacking Ensemble 是一种集成学习方法,通过将多个模型的输出组合起来形成新的特征,然后使用另一个模型来预测最终结果。

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.wrappers.scikit_learn import KerasClassifier
from sklearn.ensemble import StackingClassifier# 定义基模型
def base_model():model = Sequential()model.add(Dense(64, activation='relu', input_shape=(10,)))model.add(Dense(10, activation='softmax'))model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])return model# 创建基模型实例
base_models = [KerasClassifier(build_fn=base_model, epochs=5) for _ in range(3)]# 创建集成模型
meta_model = KerasClassifier(build_fn=base_model, epochs=5)
stacked_model = StackingClassifier(estimators=[('model%d' % i, model) for i, model in enumerate(base_models)],final_estimator=meta_model)# 训练集成模型
stacked_model.fit(x_train, y_train)# 验证集成模型
score = stacked_model.score(x_test, y_test)
print("Stacked Ensemble accuracy:", score)
3. 迁移学习

3.1 使用预训练模型

迁移学习通过使用已经在大量数据上预训练的模型,可以节省大量的训练时间和资源。TensorFlow 提供了许多预训练模型,如 VGG16、InceptionV3 等。

from tensorflow.keras.applications import VGG16# 加载预训练模型
vgg16 = VGG16(weights='imagenet', include_top=False, input_shape=(224, 224, 3))# 冻结预训练层
for layer in vgg16.layers:layer.trainable = False# 构建新模型
model = tf.keras.Sequential([vgg16,layers.Flatten(),layers.Dense(256, activation='relu'),layers.Dense(10, activation='softmax')
])# 编译模型
model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy'])# 训练模型
model.fit(x_train, y_train, epochs=5)# 评估模型
score = model.evaluate(x_test, y_test)
print("Transfer Learning accuracy:", score[1])

3.2 Fine-Tuning

Fine-Tuning 是另一种迁移学习方法,通过解冻部分预训练层并重新训练这些层来适应新的任务。

from tensorflow.keras.applications import VGG16# 加载预训练模型
vgg16 = VGG16(weights='imagenet', include_top=False, input_shape=(224, 224, 3))# 解冻最后一部分卷积层
for layer in vgg16.layers[:-4]:layer.trainable = False# 构建新模型
model = tf.keras.Sequential([vgg16,layers.Flatten(),layers.Dense(256, activation='relu'),layers.Dense(10, activation='softmax')
])# 编译模型
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.0001),loss='sparse_categorical_crossentropy',metrics=['accuracy'])# 训练模型
model.fit(x_train, y_train, epochs=5)# 评估模型
score = model.evaluate(x_test, y_test)
print("Fine-Tuning accuracy:", score[1])
4. 强化学习

4.1 DQN(Deep Q-Network)

强化学习是机器学习的一个重要分支,旨在让智能体通过与环境交互来学习最优策略。DQN 是一种基于深度学习的强化学习算法。

import tensorflow as tf
from tensorflow.keras import layers# 创建 Q-Network
model = tf.keras.Sequential([layers.Dense(24, activation='relu', input_shape=(4,)),layers.Dense(24, activation='relu'),layers.Dense(2, activation='linear')  # 输出动作空间大小
])# 编译模型
optimizer = tf.keras.optimizers.Adam(learning_rate=0.001)
loss = tf.keras.losses.Huber()# 更新 Q-Network 参数
@tf.function
def update_target_network(main_network, target_network, tau=1.0):for main_weights, target_weights in zip(main_network.trainable_variables, target_network.trainable_variables):target_weights.assign(tau * main_weights + (1.0 - tau) * target_weights)# 训练 DQN
def train_dqn(state, action, reward, next_state, done):# 计算目标 Q 值target_q_values = target_network(next_state)max_future_q = tf.reduce_max(target_q_values, axis=1)expected_q = reward + (1 - done) * 0.99 * max_future_q# 获取当前 Q 值with tf.GradientTape() as tape:current_q = main_network(state)main_q_values = tf.reduce_sum(current_q * tf.one_hot(action, 2), axis=1)# 计算损失loss_value = loss(expected_q, main_q_values)# 更新 Q-Network 参数gradients = tape.gradient(loss_value, main_network.trainable_variables)optimizer.apply_gradients(zip(gradients, main_network.trainable_variables))# 更新目标网络参数update_target_network(main_network, target_network, tau=0.01)# 初始化主网络和目标网络
main_network = model
target_network = model# 训练循环
for episode in range(100):state = env.reset()done = Falsewhile not done:action = choose_action(main_network, state)next_state, reward, done, _ = env.step(action)train_dqn(state, action, reward, next_state, done)state = next_state
5. 高级主题

5.1 AutoML

AutoML 是一种自动化的机器学习流程,可以自动选择最佳的模型架构和超参数。

import tensorflow as tf
from tensorflow.keras import layers
from tensorflow.keras.wrappers.scikit_learn import KerasClassifier
from sklearn.model_selection import RandomizedSearchCV# 定义模型构造函数
def create_model(hidden_layers=[64], learning_rate=0.01):model = tf.keras.Sequential()model.add(layers.Dense(hidden_layers[0], activation='relu', input_shape=(10,)))for units in hidden_layers[1:]:model.add(layers.Dense(units, activation='relu'))model.add(layers.Dense(10, activation='softmax'))model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=learning_rate),loss='sparse_categorical_crossentropy',metrics=['accuracy'])return model# 创建 KerasClassifier
model = KerasClassifier(build_fn=create_model, epochs=5)# 设置超参数搜索空间
param_dist = {'hidden_layers': [[64], [64, 64], [128, 64]],'learning_rate': [0.01, 0.001, 0.0001]
}# 使用 RandomizedSearchCV 进行超参数搜索
search = RandomizedSearchCV(estimator=model, param_distributions=param_dist, n_iter=10, cv=3, verbose=1)
search.fit(x_train, y_train)# 输出最佳模型
best_model = search.best_estimator_
score = best_model.score(x_test, y_test)
print("AutoML accuracy:", score)

5.2 模型解释

模型解释是理解模型预测背后逻辑的关键步骤,可以帮助提升模型的信任度和透明度。

import shap# 使用 SHAP 解释模型
explainer = shap.KernelExplainer(model.predict_proba, x_train[:100])
shap_values = explainer.shap_values(x_test[:10])# 可视化 SHAP 值
shap.summary_plot(shap_values, x_test[:10], plot_type="bar")
6. 生产环境中的模型管理

6.1 模型版本控制

在生产环境中,管理不同版本的模型非常重要,可以使用模型存储库来记录模型的每次迭代。

import mlflow# 初始化 MLflow
mlflow.tensorflow.autolog()# 创建实验
mlflow.set_experiment("my-experiment")# 记录模型
with mlflow.start_run():model.fit(x_train, y_train, epochs=5)model.evaluate(x_test, y_test)# 查看实验结果
mlflow.ui.open_ui()

6.2 模型监控与评估

在模型上线后,持续监控模型的表现和评估其效果是非常重要的。

import tensorflow as tf
from tensorflow.keras import layers# 创建模型
model = tf.keras.Sequential([layers.Dense(64, activation='relu', input_shape=(10,)),layers.Dense(64, activation='relu'),layers.Dense(10, activation='softmax')
])# 编译模型
model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy'])# 使用 TensorBoard 监控模型
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir="logs")# 训练模型
model.fit(x_train, y_train, epochs=5, callbacks=[tensorboard_callback])# 启动 TensorBoard
!tensorboard --logdir logs
7. 结论

通过本篇的学习,你已经掌握了TensorFlow在实际应用中的更多高级功能和技术细节。从模型压缩与量化、模型融合与集成、迁移学习、强化学习,到高级主题如 AutoML、模型解释,再到生产环境中的模型管理,每一步都展示了如何利用TensorFlow的强大功能来解决复杂的问题。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/470006.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

yolov7论文翻译

YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors 论文:https://arxiv.org/abs/2207.02696 代码:https://github.com/WongKinYiu/yolov7 摘要 YOLOv7 在速度和准确性方面均超越了所有已知的目标检测器&a…

Java基于SpringBoot+Vue的宠物共享平台的设计与实现(附源码,文档)

博主介绍:✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取源码联系🍅 👇🏻 精彩专栏推荐订阅👇…

对称加密与非对称加密:密码学的基石及 RSA 算法详解

对称加密与非对称加密:密码学的基石及 RSA 算法详解 在当今数字化的时代,信息安全至关重要。对称加密和非对称加密作为密码学中的两种基本加密技术,为我们的数据安全提供了强大的保障。本文将深入探讨对称加密和非对称加密的特点、应用场景&…

43.第二阶段x86游戏实战2-提取游戏里面的lua

免责声明:内容仅供学习参考,请合法利用知识,禁止进行违法犯罪活动! 本次游戏没法给 内容参考于:微尘网络安全 本人写的内容纯属胡编乱造,全都是合成造假,仅仅只是为了娱乐,请不要…

基于matlab的CNN食物识别分类系统,matlab深度学习分类,训练+数据集+界面

文章目录 前言🎓一、数据集准备🎓二、模型训练🍀🍀1.初始化🍀🍀2.加载数据集🍀🍀3.划分数据集,并保存到新的文件夹🍀🍀4.可视化数据集&#x1f34…

【webrtc】 RTP 中的 MID(Media Stream Identifier)

RTP 中的 MID(Media Stream Identifier) RID及其与MID的区别 cname与mid的对比【webrtc】CNAME 是rtprtcp中的Canonical Name(规范化名称) 同样都是RTP头部扩展: 基于mediasoup的最新的代码,学习,发现mid在创建RtpSendStream时是必须传递的参数: 例如 D:\XTRANS\soup\…

Node.Js+Knex+MySQL增删改查的简单示例(Typescript)

数据库: CREATE DATABASE MyDB; CREATE TABLE t_users (user_id int(11) NOT NULL,user_name varchar(10) NOT NULL ) ENGINEInnoDB DEFAULT CHARSETutf8; 项目结构: package.json如下,拷贝并替换你们本地的package.json后运行 npm install 命令安装所需要的依赖。…

【MATLAB代码】二维平面上的TDOA,使用加权最小二乘法,不限制锚点数量,代码可复制粘贴

本文所述的MATLAB代码实现了一个基于两步加权最小二乘法的二维目标定位算法,利用多个锚点(基站)和时间差到达(TDOA)数据来估计未知目标的位置。 订阅专栏后可以看到完整代码,复制到MATLAB空脚本上面即可直接运行。若需要单独下载,可通过下面的链接:https://download.cs…

python数据写入excel文件

主要思路:数据 转DataFrame后写入excel文件 一、数据格式为字典形式1 k e , v [‘1’, ‘e’, 0.83, 437, 0.6, 0.8, 0.9, ‘好’] 1、这种方法使用了 from_dict 方法,指定了 orient‘index’ 表示使用字典的键作为行索引,然…

【深度学习】LSTM、BiLSTM详解

文章目录 1. LSTM简介:2. LSTM结构图:3. 单层LSTM详解4. 双层LSTM详解5. BiLSTM6. Pytorch实现LSTM示例7. nn.LSTM参数详解 1. LSTM简介: LSTM是一种循环神经网络,它可以处理和预测时间序列中间隔和延迟相对较长的重要事件。LSTM通…

使用ookii-dialogs-wpf在WPF选择文件夹时能输入路径

在进行WPF开发时,System.Windows.Forms.FolderBrowserDialog的选择文件夹功能不支持输入路径: 希望能够获得下图所示的选择文件夹功能: 于是,通过NuGet中安装Ookii.Dialogs.Wpf包,并创建一个简单的工具类: …

【leetcode练习·二叉树】用「分解问题」思维解题 II

本文参考labuladong算法笔记[【强化练习】用「分解问题」思维解题 II | labuladong 的算法笔记] 技巧一 类似于判断镜像二叉树、翻转二叉树的问题,一般也可以用分解问题的思路,无非就是把整棵树的问题(原问题)分解成子树之间的问…

Qt 编写插件plugin,支持接口定义信号

https://blog.csdn.net/u014213012/article/details/122434193?spm1001.2014.3001.5506 本教程基于该链接的内容进行升级,在编写插件的基础上,支持接口类定义信号。 环境:Qt5.12.12 MSVC2017 一、创建项目 新建一个子项目便于程序管理【…

PaaS云原生:分布式集群中如何构建自动化压测工具

场景 测试环境中,压测常常依赖环境中的各种工具获取基础信息,而这些工具可能集中在某个中控机上,此时想打造的自动化工具的运行模式是: 通过中控机工具获取压测所需的基本信息在中控机部署压测工具,实际压测任务分发…

关于sass在Vue3中编写bem框架报错以及警告问题记录

在编写完bem框架后 在vite.config.ts文件进行预编译处理时,报错的错误 1. 处理方式:使用新版api, 如图: 2. 处理方式:使用 use 替换掉 import, 如图: 3. 处理方式:使用路径别名&am…

内置RTK北斗高精度定位的4G执法记录仪、国网供电服务器记录仪

内置RTK北斗高精度定位的4G执法记录仪、国网供电服务器记录仪BD311R 发布时间: 2024-10-23 11:28:42 一、 产品图片: 二、 产品特性: 4G性能:支持2K超高清图传,数据传输不掉帧,更稳定。 独立北…

【前端】深入浅出的React.js详解

React 是一个用于构建用户界面的 JavaScript 库,由 Facebook 开发并维护。随着 React 的不断演进,官方文档也在不断更新和完善。本文将详细解读最新的 React 官方文档,涵盖核心概念、新特性、最佳实践等内容,帮助开发者更好地理解…

【Elasticsearch入门到落地】1、初识Elasticsearch

一、什么是Elasticsearch Elasticsearch(简称ES)是一款非常强大的开源搜索引擎,可以帮助我们从海量数据中快速找到需要的内容。它使用Java编写,基于Apache Lucene来构建索引和提供搜索功能,是一个分布式、可扩展、近实…

扫雷游戏代码分享(c基础)

hi , I am 36. 代码来之不易👍👍👍 创建两个.c 一个.h 1:test.c #include"game.h"void game() {//创建数组char mine[ROWS][COLS] { 0 };char show[ROWS][COLS] { 0 };char temp[ROWS][COLS] { 0 };//初始化数…