python学opencv|读取图像(三十一)缩放图像的三种方法

【1】引言

前序学习进程中,我们至少掌握了两种方法,可以实现对图像实现缩放。

第一种方法是调用cv2.resize()函数实现,相关学习链接为:

python学opencv|读取图像(三)放大和缩小图像_python opencv 读取图片缩放-CSDN博客

第二种方法是在cv2.getRotationMatrix2D()函数旋转缩放图像时,顺带实现了图像缩放:

python学opencv|读取图像(二十八)使用cv2.getRotationMatrix2D()函数旋转缩放图像-CSDN博客

实际上,对于第二种方法,如果我们只设置旋转角度=0,其实就是只对图像进行放大和缩小。为验证这个猜想,我们可以做测试。

【2】前两种方法代码测试

【2.1】cv2.getRotationMatrix2D()函数缩放

首先我们给出完整代码:

import cv2 as cv # 引入CV模块
import numpy as np #引入numpy模块# 读取图片
src = cv.imread('src.png')
rows=len(src) #读取图像行数
cols=len(src[0]) #读取图像列数
center=(rows/2,cols/2) #旋转中心
#M=np.float32([[1,0,50],#[0,1,200]]) #M矩阵,x=50,y=200
M=cv.getRotationMatrix2D(center,0,0.8) #旋转并缩放图像
dst=cv.warpAffine(src,M,(cols,rows)) #输出图像
cv.imshow('src-pingyi', dst)  # 在屏幕展示绘制圆形的效果
cv.imwrite('src-suofang.png', dst)  # 保存图像
cv.waitKey()  # 图像不会自动关闭
cv.destroyAllWindows()  # 释放所有窗口

其中对于函数的设置,把旋转角度设定为0,缩放倍数为0.8:

M=cv.getRotationMatrix2D(center,0,0.8) #旋转并缩放图像

使用的原始图像为:

图1 src.png

缩放后的图像为:

图2  缩小0.8倍后的图像

如果我们把缩放倍数放大到1.5倍:

M=cv.getRotationMatrix2D(center,0,1.5) #旋转并缩放图像

代码运行后的图像为:

图3 放大1.5倍后的图像

其实对比图1、图2和图3,会发现图3对原始图像进行了裁切,这种放大效果和cv2.resize()函数相比不一样,cv2.resize()函数本身不会裁切。

【2.2】cv2.resize()函数缩放

为了实现对比cv2.resize()函数放大效果的对比,调用该函数来放大图像,给出完整代码如下:

import cv2  # 引入CV模块# 读取图片
image = cv2.imread('src.png')# 定义放大因子
scale_factor = 1.5# 放大图片,使用立方插值
scaled_image = cv2.resize(image, None, fx=scale_factor, fy=scale_factor, interpolation=cv2.INTER_CUBIC)  # INTER_CUBIC插值# 保存结果
cv2.imwrite('scaled_image-001-INTER_CUBIC m15.png', scaled_image)# 显示结果
cv2.imshow('Scaled Image15 ', scaled_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

代码运行后的输出效果为:

图4 图片放大1.5倍但没有任何裁切

由图4可见,图片放大了1.5倍,但没有任何裁切。

【3】第三种方法

在前序学习进程中,我们成功实现了对图像的倾斜拉伸,相关链接为:

python学opencv|读取图像(二十九)使用cv2.getAffineTransform()函数倾斜拉伸图像-CSDN博客

文章中已经说明,倾斜拉伸是通过控制图像的顶点实现的。首次启发,我们把图像的顶点按照固定比例缩小和放大,这样就能实现图像的缩放。为此,展开代码测试。

这里使用的原始图像为:

图5

【3.1】缩小

首先给出完整代码:

import cv2 as cv # 引入CV模块
import numpy as np #引入numpy模块# 读取图片
src = cv.imread('srcm.png')#设置点
rows=len(src) #读取图像行数
cols=len(src[0]) #读取图像列数
p1=np.zeros((3,2),np.float32) #32位浮点型全0矩阵
p1[0]=[0,0] #第一点
p1[1]=[cols-1,0] #第二点
p1[2]=[0,rows-1] #第三点
p2=np.zeros((3,2),np.float32) #32位浮点型全0矩阵
p2[0]=[0,0] #新的第一点
p2[1]=[0.8*(cols-1),0] #新的第二点
p2[2]=[0,0.8*(rows-1)] #新的第三点#center=(rows/2,cols/2) #旋转中心
#M=np.float32([[1,0,50],#[0,1,200]]) #M矩阵,x=50,y=200
M=cv.getAffineTransform(p1,p2)
#M=cv.getRotationMatrix2D(center,60,0.8) #旋转并缩放图像
dst=cv.warpAffine(src,M,(cols,rows)) #输出图像
cv.imshow('srcm-qxls', dst)  # 在屏幕展示绘制圆形的效果
cv.imwrite('srcm-qxls-8.png', dst)  # 保存图像
cv.waitKey()  # 图像不会自动关闭
cv.destroyAllWindows()  # 释放所有窗口

在这里,对新的点设置了0.8倍的缩小因子:

p1=np.zeros((3,2),np.float32) #32位浮点型全0矩阵
p1[0]=[0,0] #第一点
p1[1]=[cols-1,0] #第二点
p1[2]=[0,rows-1] #第三点
p2=np.zeros((3,2),np.float32) #32位浮点型全0矩阵
p2[0]=[0,0] #新的第一点
p2[1]=[0.8*(cols-1),0] #新的第二点
p2[2]=[0,0.8*(rows-1)] #新的第三点

代码运行后的输出效果为:

图6 缩小0.8倍

由图6可见,图像成功缩小为原来的0.8倍。

【3.2】放大

修改缩放因子,把图像放大1.5倍:

p1=np.zeros((3,2),np.float32) #32位浮点型全0矩阵
p1[0]=[0,0] #第一点
p1[1]=[cols-1,0] #第二点
p1[2]=[0,rows-1] #第三点
p2=np.zeros((3,2),np.float32) #32位浮点型全0矩阵
p2[0]=[0,0] #新的第一点
p2[1]=[1.5*(cols-1),0] #新的第二点
p2[2]=[0,1.5*(rows-1)] #新的第三点

此时,会惊喜地发现一个猫猫头:

图7 放大1.5倍

显然,cv2.getAffineTransform()函数在放大图像的时候,也会对图像进行裁切。

【4】效果对比

结合上面的使用效果,会发现:

使用cv2.getRotationMatrix2D()函数、cv2.resize()函数和cv2.getAffineTransform函数均可以实现图像缩放;

在图像缩小效果上,三个函数差不多,只是cv2.getRotationMatrix2D()函数和cv2.getAffineTransform函数会保留原本画布的大小,会看到一些纯色的背景;

在图像放大效果上,三个函数不一样,cv2.getRotationMatrix2D()函数和cv2.getAffineTransform函数会会裁切图像依然会保留原有画布的大小,图像超出画布大小的部分会被裁切,而cv2.resize()函数不会裁切图像,会等比例放大图像的所有部分。

图8 三种图像缩放效果对比

【5】总结

掌握了python+opencv实现图像缩放的三种方法。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/505907.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

实训云上搭建集群

文章目录 1. 登录实训云1.1 实训云网址1.2 登录实训云 2. 创建网络2.1 网络概述2.2 创建步骤 3. 创建路由器3.1 路由器名称3.1 创建路由器3.3 查看网络拓扑 4. 连接子网5. 创建虚拟网卡5.1 创建原因5.2 查看端口5.3 创建虚拟网卡 6. 管理安全组规则6.1 为什么要管理安全组规则6…

c++入门之 命名空间与输入输出

1、命名空间 1.1使用命名空间的原因 先看一个例子&#xff1a; #include <iostream>int round 0;int main() {printf("%d", round);return 0; }请问&#xff0c;这个程序能跑起来吗&#xff1f; 答案是否定的 原因是&#xff0c;当我们想创建一个全局变量 …

继承(7)

大家好&#xff0c;今天我们继续来学习一下继承的知识&#xff0c;这方面需要大家勤动脑才能理解&#xff0c;那么我们来看。 1.9 protected关键字 在类和对象章节中&#xff0c;为了实现封装特性,java中引入访向限定符,主要限定:类或者类中成员能否在类外和其他包中被访问. …

Unity中 Xlua使用整理(二)

1.Xlua的配置应用 xLua所有的配置都支持三种方式&#xff1a;打标签&#xff1b;静态列表&#xff1b;动态列表。配置要求&#xff1a; 列表方式均必须是static的字段/属性 列表方式均必须放到一个static类 建议不用标签方式 建议列表方式配置放Editor目录&#xff08;如果是H…

Flink三种集群部署模型

这里写自定义目录标题 Flink 集群剖析Flink 应用程序执行Flink Session 集群&#xff08;Session Mode&#xff09;Flink Job 集群&#xff08;以前称为per-job&#xff09;Flink Application 集群&#xff08;Application Mode&#xff09; 参考 Flink 集群剖析 Flink 运行时…

Windows10环境下安装RabbitMq折腾记

最近有个老项目需要迁移到windows10环境&#xff0c;用的是比较老的rabbitmq安装包&#xff0c;如下所示。经过一番折腾&#xff0c;死活服务起不来&#xff0c;最终果断放弃老版本启用新版本。现在把折腾过程记录下&#xff1a; 一、安装erlang 安装完成后的目录结构&#xff…

【深度学习】通俗理解偏差(Bias)与方差(Variance)

在统计学习中&#xff0c;我们通常使用方差与偏差来衡量一个模型 1. 方差与偏差的概念 偏差(Bais)&#xff1a; 预测值和真实值之间的误差 方差(Variance)&#xff1a; 预测值之间的离散程度 低偏差低方差、高偏差低方差&#xff1a; 图中每个点表示同一个模型每次采样出不同…

(五)ROS通信编程——参数服务器

前言 参数服务器在ROS中主要用于实现不同节点之间的数据共享&#xff08;P2P&#xff09;。参数服务器相当于是独立于所有节点的一个公共容器&#xff0c;可以将数据存储在该容器中&#xff0c;被不同的节点调用&#xff0c;当然不同的节点也可以往其中存储数据&#xff0c;关…

使用Keil创建FreeRTOS工程

之前记录了使用Keil创建Keil自带的RTX5的RTOS和使用CubeMX创建FreeRTOS。这次来记录下使用Keil创建FreeRTOS。使用CMSIS-RTOS2将FreeRTOS封装好 1.Pack增加CMSIS-FreeRTOS 2.CMSIS配置为FreeRTOS 点击Resolve后再点击OK即可 3.屏蔽相关文件 4.屏蔽3个中断 将void PendSV_Han…

LLM - Llama 3 的 Pre/Post Training 阶段 Loss 以及 logits 和 logps 概念

欢迎关注我的CSDN&#xff1a;https://spike.blog.csdn.net/ 本文地址&#xff1a;https://spike.blog.csdn.net/article/details/145056912 Llama 3 是 Meta 公司发布的开源大型语言模型&#xff0c;包括具有 80 亿和 700 亿参数的预训练和指令微调的语言模型&#xff0c;支持…

Unity + Firebase + GoogleSignIn 导入问题

我目前使用 Unity版本&#xff1a;2021.3.33f1 JDK版本为&#xff1a;1.8 Gradle 版本为&#xff1a;6.1.1 Firebase 版本: 9.6.0 Google Sign In 版本为&#xff1a; 1.0.1 问题1 &#xff1a;手机点击登录报错 apk转化成zip&#xff0c;解压&#xff0c;看到/lib/armeabi-v…

安卓投屏电脑最详细教程

安卓手机投屏到电脑的操作可以通过多种方式实现&#xff0c;最常见的方法有使用 Scrcpy、911投屏 或者 Windows 10/11 自带的投屏功能。下面是几个常用方法的详细教程&#xff1a; 方法 1&#xff1a;使用 Scrcpy &#xff08;推荐&#xff0c;免费的开源工具&#xff09; Sc…

VSCode配置php开发环境

我偷偷地告诉你&#xff0c; 有一个地方叫做稻城&#xff0c;我要和我最心爱的人一起去到那里... 2025.1.10 声明 仅作为个人学习使用&#xff0c;仅供参考 不知道如何配置php本地环境的&#xff0c;请翻阅 笔者的上一篇文章 正文 VSCode安装 官网&#xff1a;Download Vis…

StarRocks Awards 2024 年度贡献人物

在过去一年&#xff0c;StarRocks 在 Lakehouse 与 AI 等关键领域取得了显著进步&#xff0c;其卓越的产品功能极大地简化和提升了数据分析的效率&#xff0c;使得"One Data&#xff0c;All Analytics" 的愿景变得更加触手可及。 虽然实现这一目标的道路充满挑战且漫…

python学习笔记—17—数据容器之字符串

1. 字符串 (1) 字符串能通过下标索引来获取其中的元素 (2) 旧字符串无法修改特定下标的元素 (3) index——查找字符串中任意元素在整个字符串中的起始位置(单个字符或字符串都可以) tmp_str "supercarrydoinb" tmp_position1 tmp_str.index("s") tmp_p…

跟着逻辑先生学习FPGA-第八课 基于 I2C 协议的 EEPROM 驱动控制

硬件平台&#xff1a;征战Pro开发板 软件平台&#xff1a;Vivado2018.3 仿真软件&#xff1a;Modelsim10.6d 文本编译器&#xff1a;Notepad 征战Pro开发板资料 链接:https://pan.baidu.com/s/1AIcnaGBpNLgFT8GG1yC-cA?pwdx3u8 提取码:x3u8 1知识背景 I2C 通讯协议&#xf…

Mac上鸿蒙配置HDC报错:zsh: command not found: hdc -v

这个问题困扰了好久&#xff0c;按照官方文档去配置的&#xff0c;就是会一直报错&#xff0c;没有配置成功&#xff0c;主要原因是官网ide的路径可能和你本地的ide的路径不一致&#xff0c;因为官网的ide版本可能是最新的 一.先查找你本地的toolchains目录在哪里&#xff0c;…

基于华为ENSP的OSPF状态机、工作过程、配置保姆级别详解(2)

本篇技术博文摘要 &#x1f31f; 基于华为enspOSPF状态机、OSPF工作过程、.OSPF基本配置等保姆级别具体详解步骤&#xff1b;精典图示举例说明、注意点及常见报错问题所对应的解决方法 引言 &#x1f4d8; 在这个快速发展的技术时代&#xff0c;与时俱进是每个IT人的必修课。我…

【Rust自学】11.1. 编写和运行测试

喜欢的话别忘了点赞、收藏加关注哦&#xff0c;对接下来的教程有兴趣的可以关注专栏。谢谢喵&#xff01;(&#xff65;ω&#xff65;) 11.1.1. 什么是测试 在Rust里一个测试就是一个函数&#xff0c;它被用于验证非测试代码的功能是否和预期一致。 在一个测试的函数体里通…

计算机网络 (31)运输层协议概念

一、概述 从通信和信息处理的角度看&#xff0c;运输层向它上面的应用层提供通信服务&#xff0c;它属于面向通信部分的最高层&#xff0c;同时也是用户功能中的最低层。运输层的一个核心功能是提供从源端主机到目的端主机的可靠的、与实际使用的网络无关的信息传输。它向高层用…