获取股票交易数据的Tushare的使用方法

      博客:https://www.cnblogs.com/DreamRJF/p/8660630.html

 以前不知道怎么从网上直接获取数据,都是从交易软件上下载数据,也只有个别的软件才能下载,例如通达信可以导出数据,现在学到了一种新的方法,利用tushare可以获取金融数据,这里就简单的分享一下股票数据的获取方法。

      Tushare是一个免费、开源的python财经数据接口包。主要实现对股票等金融数据从数据采集、清洗加工 到 数据存储的过程,能够为金融分析人员提供快速、整洁、和多样的便于分析的数据,为他们在数据获取方面极大地减轻工作量,使他们更加专注于策略和模型的研究与实现上。考虑到Python pandas包在金融量化分析中体现出的优势,Tushare返回的绝大部分的数据格式都是pandas DataFrame类型,非常便于用pandas/NumPy/Matplotlib进行数据分析和可视化。当然,如果您习惯了用Excel或者关系型数据库做分析,您也可以通过Tushare的数据存储功能,将数据全部保存到本地后进行分析。应一些用户的请求,从0.2.5版本开始,Tushare同时兼容Python 2.x和Python 3.x,对部分代码进行了重构,并优化了一些算法,确保数据获取的高效和稳定。

      不管你是量化投资分析师,还是正在学习Python进行数据分析的学习者,这种方法获取的数据都可以适用。

一、获取前的准备

        1、安装Python,这个不再赘述,Python官网下载安装适合自己计算机的版本。

        2、安装pandas,我是直接安装的Anaconda,包含有pandas,很实用,建议安装Anaconda,下载地址:https://www.anaconda.com/download/  ,选择适合的版本安装。

        3、Tushare的下载安装,下载地址:https://pypi.python.org/pypi/tushare   ,下载完之后解压即可,无需安装。

二、获取数据

       1、获取历史行情数据 get_hist_data()

       获取个股历史交易数据(包括均线数据),可以通过参数设置获取日k线、周k线、月k线,以及5分钟、15分钟、30分钟和60分钟k线数据。本接口只能获取近3年的日线数据,适合搭配均线数据进行选股和分析。

参数说明:

  • code:股票代码,即6位数字代码,或者指数代码(sh=上证指数 sz=深圳成指 hs300=沪深300指数 sz50=上证50 zxb=中小板 cyb=创业板)
  • start:开始日期,格式YYYY-MM-DD
  • end:结束日期,格式YYYY-MM-DD
  • ktype:数据类型,D=日k线 W=周 M=月 5=5分钟 15=15分钟 30=30分钟 60=60分钟,默认为D
  • retry_count:当网络异常后重试次数,默认为3
  • pause:重试时停顿秒数,默认为0

返回值说明:

  • date:日期
  • open:开盘价
  • high:最高价
  • close:收盘价
  • low:最低价
  • volume:成交量
  • price_change:价格变动
  • p_change:涨跌幅
  • ma5:5日均价
  • ma10:10日均价
  • ma20:20日均价
  • v_ma5:5日均量
  • v_ma10:10日均量
  • v_ma20:20日均量
  • turnover:换手率[注:指数无此项]

        使用方法:

import tushare as ts
data=ts.get_hist_data('300274')
print(data)

        需要注意的是路径要在tushare文件下,否则会报错。

        执行结果:

 View Code

        获取某一时间段的历史数据

import tushare as ts
data=ts.get_hist_data('300274',start='2017-01-01',end='2018-03-27')
print(data)

         执行结果:

 View Code

        另外一个获取历史数据的函数get_h_data()。

import tushare as ts
data=ts.get_h_data('300274')
print(data)

        执行结果:

 View Code

         在不指定开始时间和结束时间时,该函数默认返回最近一年的日线数据,返回的数据与get_hist_data不同的是,该函数只返回开盘价(open)、最高价(high)、收盘价(close)、最低价(low)、成交量(volume)、成交金额(amount)六列 ,同样加上时间段也可以获取相应数据。

 

        第三个获取历史数据的函数get_k_data()。

import tushare as ts
data=ts.get_k_data('300274')
print(data)

       执行结果:

 View Code

       与前两个函数相比,这个函数获取数据的速度很明显要快很多,而且可以返回每一只股票从上市开始到当前交易日的所有日线数据,这个有点是前两个函数都不具备的,更重要的是,如果批量3000多只股票的数据,前两个都不如get_k_data()稳定。

其他:

复制代码

ts.get_hist_data('600848', ktype='W') #获取周k线数据
ts.get_hist_data('600848', ktype='M') #获取月k线数据
ts.get_hist_data('600848', ktype='5') #获取5分钟k线数据
ts.get_hist_data('600848', ktype='15') #获取15分钟k线数据
ts.get_hist_data('600848', ktype='30') #获取30分钟k线数据
ts.get_hist_data('600848', ktype='60') #获取60分钟k线数据
ts.get_hist_data('sh')#获取上证指数k线数据,其它参数与个股一致,下同
ts.get_hist_data('sz')#获取深圳成指k线数据
ts.get_hist_data('hs300')#获取沪深300指数k线数据
ts.get_hist_data('sz50')#获取上证50指数k线数据
ts.get_hist_data('zxb')#获取中小板指数k线数据
ts.get_hist_data('cyb')#获取创业板指数k线数据

复制代码

        2、获取实时行情数据get_today_all()

返回值说明:

  • code:代码
  • name:名称
  • changepercent:涨跌幅
  • trade:现价
  • open:开盘价
  • high:最高价
  • low:最低价
  • settlement:昨日收盘价
  • volume:成交量
  • turnoverratio:换手率
  • amount:成交量
  • per:市盈率
  • pb:市净率
  • mktcap:总市值
  • nmc:流通市值
import tushare as ts
ts.get_today_all()

       执行结果:

 View Code

       一次性获取当前交易所有股票的行情数据(如果是节假日,即为上一交易日)

       3、获取历史分笔数据之:get_tick_data()

       获取个股以往交易历史的分笔数据明细,通过分析分笔数据,可以大致判断资金的进出情况。在使用过程中,对于获取股票某一阶段的历史分笔数据,需要通过加入交易日参数并append到一个DataFrame或者直接append到本地同一个文件里。历史分笔接口只能获取当前交易日之前的数据,当日分笔历史数据请调用get_today_ticks()接口或者在当日18点后通过本接口获取。

参数说明:

  • code:股票代码,即6位数字代码
  • date:日期,格式YYYY-MM-DD
  • retry_count : int, 默认3,如遇网络等问题重复执行的次数
  • pause : int, 默认 0,重复请求数据过程中暂停的秒数,防止请求间隔时间太短出现的问题

      使用方法:

import tushare as ts
df=ts.get_tick_data('300274',date='2018-03-27')
df.head(10)                                       #距离执行时间最近的十笔交易

       执行结果:

复制代码

   time  price change  volume   amount type
0  15:00:03  18.46     --    2373  4380761   卖盘
1  14:57:03  18.46  -0.01     188   347048   卖盘
2  14:57:00  18.47  -0.01      42    77574   卖盘
3  14:56:57  18.48     --     644  1190112   买盘
4  14:56:54  18.48   0.01      80   147840   买盘
5  14:56:51  18.47   0.01       9    16623  中性盘
6  14:56:48  18.46  -0.02      38    70148   卖盘
7  14:56:45  18.48   0.01      25    46200   买盘
8  14:56:42  18.47     --      87   160689   买盘
9  14:56:36  18.47     --      82   151454   买盘

复制代码

       获取当日历史分笔数据:get_today_ticks()

       获取当前交易日(交易进行中使用)已经产生的分笔明细数据。

参数说明:

  • code:股票代码,即6位数字代码
  • retry_count : int, 默认3,如遇网络等问题重复执行的次数
  • pause : int, 默认 0,重复请求数据过程中暂停的秒数,防止请求间隔时间太短出现的问题

返回值说明:

  • time:时间
  • price:当前价格
  • pchange:涨跌幅
  • change:价格变动
  • volume:成交手
  • amount:成交金额(元)
  • type:买卖类型【买盘、卖盘、中性盘】

      使用方法:

import tushare as ts
df = ts.get_today_ticks('300274')            #当日的历史分笔数据
df.head(10)                                  #距离执行时间最近的10笔

      执行结果:

复制代码

[Getting data:]###########################################Out[6]: time  price pchange  change  volume  amount type
0  13:32:15  18.68   +1.19   -0.01       1    1868   买盘
1  13:32:12  18.69   +1.25    0.00       8   14952   买盘
2  13:32:06  18.69   +1.25    0.01       1    1869   买盘
3  13:32:03  18.68   +1.19    0.00      19   35492   卖盘
4  13:31:51  18.68   +1.19    0.00       8   14944   买盘
5  13:31:48  18.68   +1.19    0.01      14   26152   买盘
6  13:31:45  18.67   +1.14   -0.01      30   56010   卖盘
7  13:31:42  18.68   +1.19    0.01       8   14944   买盘
8  13:31:36  18.67   +1.14    0.00      14   26138   卖盘
9  13:31:33  18.67   +1.14   -0.01      10   18670   卖盘

复制代码

       4、获取实时分笔数据之:get_realtime_quotes()

       获取实时分笔数据,可以实时取得股票当前报价和成交信息,其中一种场景是,写一个python定时程序来调用本接口(可两三秒执行一次,性能与行情软件基本一致),然后通过DataFrame的矩阵计算实现交易监控,可实时监测交易量和价格的变化。

参数说明:

  • symbols:6位数字股票代码,或者指数代码(sh=上证指数 sz=深圳成指 hs300=沪深300指数 sz50=上证50 zxb=中小板 cyb=创业板) 可输入的类型:str、list、set或者pandas的Series对象

返回值说明:

复制代码

0:name,股票名字
1:open,今日开盘价
2:pre_close,昨日收盘价
3:price,当前价格
4:high,今日最高价
5:low,今日最低价
6:bid,竞买价,即“买一”报价
7:ask,竞卖价,即“卖一”报价
8:volume,成交量 maybe you need do volume/100
9:amount,成交金额(元 CNY)
10:b1_v,委买一(笔数 bid volume)
11:b1_p,委买一(价格 bid price)
12:b2_v,“买二”
13:b2_p,“买二”
14:b3_v,“买三”
15:b3_p,“买三”
16:b4_v,“买四”
17:b4_p,“买四”
18:b5_v,“买五”
19:b5_p,“买五”
20:a1_v,委卖一(笔数 ask volume)
21:a1_p,委卖一(价格 ask price)
...
30:date,日期;
31:time,时间;

复制代码

        使用方法:

import tushare as ts
df = ts.get_realtime_quotes('300274')                             #单个股票实时行情    
df[['code','name','price','bid','ask','volume','amount','time']]  #需要显示的属性

        执行结果:

code  name   price     bid     ask    volume         amount      time
0  300274  阳光电源  18.780  18.750  18.770  17003279  318581216.230  13:16:06

       

        多只股票的实时分笔数据(最好不要超过30):

import tushare as ts
df = ts.get_realtime_quotes(['600460','000762','000725'])
df[['code','name','price','bid','ask','volume','amount','time']]

         获取实时指数:

ts.get_realtime_quotes('sh')                                      #上证指数ts.get_realtime_quotes(['sh','sz','hs300','sz50','zxb','cyb'])    #上证指数 深圳成指 沪深300指数 上证50 中小板 创业板ts.get_realtime_quotes(['sh','600848'])                           #或者混搭

        大盘指数行情列表:

        获取大盘指数实时行情列表,以表格的形式展示大盘指数实时行情。

返回值说明:

  • code:指数代码
  • name:指数名称
  • change:涨跌幅
  • open:开盘点位
  • preclose:昨日收盘点位
  • close:收盘点位
  • high:最高点位
  • low:最低点位
  • volume:成交量(手)
  • amount:成交金额(亿元)

         使用方法:

import tushare as ts
df = ts.get_index()
print(df)

         执行结果:

 View Code

         5、获取大单交易数据

         获取大单交易数据,默认为大于等于400手,数据来源于新浪财经。

参数说明:

  • code:股票代码,即6位数字代码
  • date:日期,格式YYYY-MM-DD
  • vol:手数,默认为400手,输入数值型参数
  • retry_count : int, 默认3,如遇网络等问题重复执行的次数
  • pause : int, 默认 0,重复请求数据过程中暂停的秒数,防止请求间隔时间太短出现的问题

返回值说明:

  • code:代码
  • name:名称
  • time:时间
  • price:当前价格
  • volume:成交手
  • preprice :上一笔价格
  • type:买卖类型【买盘、卖盘、中性盘】

        使用方法:

import tushare as ts
df = ts.get_sina_dd('300274', date='2018-03-28')            #默认400手
#df = ts.get_sina_dd('300274', date='2018-03-28', vol=500)  #指定大于等于500手的数据
print(df)

         执行结果:

 View Code

        6、数据的存储

        数据存储模块主要是引导用户将数据保存在本地磁盘或数据库服务器上,便于后期的量化分析和回测使用,在以文件格式保存在电脑磁盘的方式上,调用的是pandas本身自带的方法,此处会罗列常用的参数和说明。

        保存为CSV格式文件

       pandas的DataFrame和Series对象提供了直接保存csv文件格式的方法,通过参数设定,轻松将数据内容保存在本地磁盘。

常用参数说明:

  • path_or_buf: csv文件存放路径或者StringIO对象
  • sep : 文件内容分隔符,默认为,逗号
  • na_rep: 在遇到NaN值时保存为某字符,默认为’‘空字符
  • float_format: float类型的格式
  • columns: 需要保存的列,默认为None
  • header: 是否保存columns名,默认为True
  • index: 是否保存index,默认为True
  • mode : 创建新文件还是追加到现有文件,默认为新建
  • encoding: 文件编码格式
  • date_format: 日期格式

注:在设定path时,如果目录不存在,程序会提示IOError,请先确保目录已经存在于磁盘中。

      使用方法:

复制代码

import tushare as ts
df = ts.get_hist_data('300274')
#直接保存
df.to_csv('C:/Users/07010018/Desktop/tushare-1.1.6/exportdata/300274.csv')
#选择保存
#df.to_csv('C:/Users/07010018/Desktop/tushare-1.1.6/exportdata/300274.csv',columns=['open','high','low','close'])

复制代码

       追加数据的方式:

       某些时候,可能需要将一些同类数据保存在一个大文件中,这时候就需要将数据追加在同一个文件里,简单举例如下:

复制代码

import tushare as ts
import osfilename = 'c:/day/bigfile.csv'
for code in ['000875', '600848', '000981']:df = ts.get_hist_data(code)if os.path.exists(filename):df.to_csv(filename, mode='a', header=None)else:df.to_csv(filename)

复制代码

【注:如果是不考虑header,直接df.to_csv(filename, mode=’a’)即可,否则,每次循环都会把columns名称也append进去】

        保存为Excel格式文件

        pandas将数据保存为MicroSoft Excel文件格式。

常用参数说明:

  • excel_writer: 文件路径或者ExcelWriter对象
  • sheet_name:sheet名称,默认为Sheet1
  • sep : 文件内容分隔符,默认为,逗号
  • na_rep: 在遇到NaN值时保存为某字符,默认为’‘空字符
  • float_format: float类型的格式
  • columns: 需要保存的列,默认为None
  • header: 是否保存columns名,默认为True
  • index: 是否保存index,默认为True
  • encoding: 文件编码格式
  • startrow: 在数据的头部留出startrow行空行
  • startcol :在数据的左边留出startcol列空列

        使用方法:

复制代码

import tushare as ts
df = ts.get_hist_data('300274')
#直接保存
df.to_excel('C:/Users/07010018/Desktop/tushare-1.1.6/exportdata/300274.xlsx')#设定数据位置(从第3行,第6列开始插入数据)
#df.to_excel('C:/Users/07010018/Desktop/tushare-1.1.6/exportdata/300274.xlsx', startrow=2,startcol=5)

复制代码

        保存为MySQL数据库

        pandas提供了将数据便捷存入关系型数据库的方法,在新版的pandas中,主要是已sqlalchemy方式与数据建立连接,支持MySQL、Postgresql、Oracle、MS SQLServer、SQLite等主流数据库。本例以MySQL数据库为代表,展示将获取到的股票数据存入数据库的方法,其他类型数据库请参考sqlalchemy官网文档的create_engine部分。

常用参数说明:

  • name:表名,pandas会自动创建表结构
  • con:数据库连接,最好是用sqlalchemy创建engine的方式来替代con
  • flavor:数据库类型 {‘sqlite’, ‘mysql’}, 默认‘sqlite’,如果是engine此项可忽略
  • schema:指定数据库的schema,默认即可
  • if_exists:如果表名已存在的处理方式 {‘fail’, ‘replace’, ‘append’},默认‘fail’
  • index:将pandas的Index作为一列存入数据库,默认是True
  • index_label:Index的列名
  • chunksize:分批存入数据库,默认是None,即一次性全部写人数据库
  • dtype:设定columns在数据库里的数据类型,默认是None

  使用方法:

复制代码

from sqlalchemy import create_engine
import tushare as tsdf = ts.get_tick_data('300274', date='2018-03-27')
engine = create_engine('mysql://user:passwd@127.0.0.1/db_name?charset=utf8')#存入数据库
df.to_sql('tick_data',engine)#追加数据到现有表
#df.to_sql('tick_data',engine,if_exists='append')

复制代码

 

      另外,数据也可以保存为HDF5格式,JSON格式,存入NoSQL数据库,这里就不在一一赘述,就简单介绍几种常用的。

所有内容,仅作参考,可能有不足或错误之处,欢迎留言批评指正

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/52596.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

四万字歌词分析:那些年,我们一起追的五月天到底在唱什么?

大数据文摘出品 作者:蒋宝尚、曹培信 你见过自带荧光棒、中途大合唱、放完不离场的电影观众么? 如果你去电影院看了《五月天人生无限公司》,那么,你一定明白文摘菌在说什么。 如果你还没有看过,文摘菌这里弱剧透一下&a…

歌词生成(一)-SongNet简述

歌词生成相较于普通文本生成,需要配合特定的乐曲,并演唱。因而要求,每句歌词演唱的长度正好合拍,即不同曲子,每句歌词的字符个数是要受限制于乐曲。 本文暂不考虑曲配词问题,只是将问题抽象为,…

Android 开源歌词控件 LyricViewX

Android 开源歌词控件 LyricViewX 开源地址 Github https://github.com/Moriafly/LyricViewX LyricViewX 是一个美观的安卓歌词控件。 基于 LrcView 设计。 效果展示 Dso Music Github https://github.com/Moriafly/DsoMusic 双语 拖动 单语 比较与 LrcView 100% Kotlin…

如何获取LRC歌词

在日常的剪辑或者是其他情况下,需要使用LRC歌词,不需要下载新的杂门软件就能获取lrc歌词,真的很心动了,这里以网易云音乐为例: 1、打开网易云音乐网页版,找到需要的歌词 2、按F12键,选择 Netwo…

从ChatGPT等大模型的兴起,看未来计算芯片的发展趋势

欢迎关注软硬件融合公众号: 编者按 ChatGPT的火爆,直接引爆了大模型的繁荣,也使得NVIDIA GPU供不应求。 从发展的角度看,GPU并不是大模型最高效的计算平台。 GPT等大模型为什么没有突破万亿参数?核心原因在于在现在的G…

GPU和CPU芯片区别:为何要用GPU挖矿?

CPU和GPU之所以大不相同,是由于其设计目标的不同,它们分别针对了两种不同的应用场景。CPU需要很强的通用性来处理各种不同的数据类型,同时又要逻辑判断又会引入大量的分支跳转和中断的处理。这些都使得CPU的内部结构异常复杂。而GPU面对的则是…

2023全云在线联合微软AIGC专场沙龙:人工智能与企业创新,促进创造力的数字化转型

6月29日,由全云在线平台和微软联合主办的人工智能与企业创新:促进创造力的数字化转型——2023AIGC微软专场沙龙在广州天河区正佳万豪酒店举行。 关于2023AIGC微软专场沙龙 GPT翻开了AGI新的一页,也翻开了各行各业的新篇章。 2022年11月30日…

呼吁暂停 GPT-5 研发的马斯克,转身抢购 1 万个 GPU,为 Twitter 大模型做准备!...

整理 | 屠敏 出品 | CSDN(ID:CSDNnews) 曾不止一次地支持 AI 威胁论、曾与 OpenAI 分道扬镳、曾怒批 ChatGPT 唤醒人工智能、曾联合发起公开信,呼吁全球实验室应停止训练比 GPT-4 更强大的模型...... 毫无疑问,曾被 Fa…

个人掏5000万美元、获2.3亿美金认购,造中国版OpenAI,45岁前美团联合创始人王慧文再创业!...

整理 | 苏宓 出品 | CSDN(ID:CSDNnews) 「即便只有一个人,我也要出发」,2023 年 2 月 13 日,原美团联合创始人王慧文在社交媒体平台郑重地说道。 这一次他的目光不再是聚焦在社交关系网络平台、二手房网站、…

微软:多模态大模型GPT-4就在下周,撞车百度?

欢迎关注“ 计算机视觉研究院 ” 计算机视觉研究院专栏 作者:Edison_G 扫描二维码 关注我们 大家都在猜 GPT-4 发布时间,现在有人提前公布答案了,还是微软自己的 CTO。 转自《机器之心》 我们知道,引爆如今科技界军备竞赛的 ChatG…

【全栈】vue3.0 + golang + mysql + gorm + jwt + M5stack + Chatgpt集成【博客系统2.1】版本

2.1版本release 修复博客2.0bug&#xff08;我的-切换后-博客不能刷新&#xff09; 增加了远程灯控 chatGpt3.0集成 项目结构 <template><div id"app"><!-- 表单处理 ------------------><!-- <MyHeader :addTodo"addTodo"/…

【自然语言处理】【大模型】ChatGLM-6B模型结构代码解析(单机版)

ChatGLM-6B模型结构代码解析(单机版) ​ 本文介绍ChatGLM-6B的模型结构&#xff0c;代码来自https://huggingface.co/THUDM/chatglm-6b/blob/main/modeling_chatglm.py。 相关博客 【自然语言处理】【大模型】ChatGLM-6B模型结构代码解析(单机版) 【自然语言处理】【大模型】BL…

【自然语言处理】【大模型】BLOOM模型结构源码解析(单机版)

BLOOM模型结构源码解析(单机版) ​ 本文基于transformers中BLOOM模型代码来解析BLOOM的原理及实现。 相关博客 【自然语言处理】【大模型】ChatGLM-6B模型结构代码解析(单机版) 【自然语言处理】【大模型】BLOOM模型结构源码解析(单机版) 【自然语言处理】【大模型】极低资源微…

最新发布!面向开发者的 ChatGPT Prompt Engineering 免费教程,吴恩达与OpenAI合作打造!...

就在几小时之前&#xff0c;吴恩达在Twitter上宣布了与OpenAI合作的最新免费教程&#xff1a;《ChatGPT Prompt Engineering for Developers》 我们可以通过下面的链接&#xff0c;直达官网网站&#xff1a; https://www.deeplearning.ai/short-courses/chatgpt-prompt-enginee…

Datawhale-基于向量检索减少chatGPT的幻觉

AI的幻觉 可以使用CVP技术栈解决上述问题 CVP技术栈 ossChat Application 向量数据库 Zilliz Cloud是Milvus的托管服务。 基于Langchain搭建问答系统

chatgpt赋能python:Python中连接数据库的方式

Python中连接数据库的方式 数据库是现代Web应用程序中必不可少的组成部分之一。Python是一个功能丰富的编程语言&#xff0c;为我们提供了许多连接数据库的选项。在本文中&#xff0c;我们将介绍Python中的一些最受欢迎的数据库连接选项&#xff0c;并帮助您选择最适合您项目的…

chatgpt赋能python:Python如何添加数据库

Python如何添加数据库 介绍 Python是一种高级的、通用的、解释型的编程语言&#xff0c;因其简单易学、可读性强而被广泛应用在各种领域&#xff0c;尤其是数据处理、Web开发等方面。随着Web应用越来越流行&#xff0c;数据库的使用也变得越来越普遍&#xff0c;因此&#xf…

chatgpt赋能Python-python怎么装数据库

介绍 Python 是一种强大的编程语言&#xff0c;能够让程序员轻松地编写高效的代码来解决各种问题。Python 也被广泛用于 web 应用程序的开发。这些应用程序通常需要与数据库进行交互。本文将介绍如何在 Python 中安装数据库以便进行数据操作。 步骤 第一步&#xff1a;选择一…

机械臂全面学习---moveit和gazebo联合仿真

1、修改XXX.moveit_config/config/ros_controllers.yaml # MoveIt-specific simulation settings moveit_sim_hw_interface:joint_model_group: controllers_initial_group_joint_model_group_pose: controllers_initial_pose_ # Settings for ros_control control loop gener…

机械原理课程设计 洗瓶机机构设计(设计说明书+3张CAD图纸+连杆机构设计软件)

目 录 一 前 言 1 二 设计任务书 1 1、设计题目 1 2、设计任务 2 三 工艺动作分解和工作原理 2 1、工艺动作分解 2 2、原始数据 3 四 机械运动方案设计 3 1、分析设计要求 3 2、推瓶机构方案的设计 4 &#xff08;1&#xff09; 推瓶机构方案的选择 4 &#xff08;2&#xff09…