垃圾分类全套技术方案

ed0014c0268b858063592fc46c498d6d.gif

向AI转型的程序员都关注了这个号👇👇👇

设计构思与创意

  本作品以微信小程序为“个人”平台,用户可在微信小程序中录入必要的人脸等个人信息,并且能够以微信小程序为窗口查询自己的垃圾分类详情。为保证微信小程序的丰富性和人性化,用户可在小程序中通过拍照、语音、搜索等查询日常生活中常遇的生活垃圾,积累自己垃圾分类知识。在垃圾桶端,系统在用户授权情况下通过拍摄用户人脸信息匹配用户个人数据库,并记录其垃圾分类信息。此外,垃圾桶在本作品中充当“引导者”角色,用以引导用户将垃圾投掷到正确的垃圾桶中。在管理端,相关部门一方面可在此总览某地区总体的垃圾分类情况,另一方面也可以通过查询接口查询到具体的某个人的垃圾分类详情。相关部门基于此能够更加有效地制定出行之有效、因地制宜的垃圾分类政策和相关政策的高效实施。

视频课程分享长按图片,识别二维码

技术运用与特色

  基于上述方案,本作品以国产深度学习开发框架 PaddlePaddle 为基础,融合深度学习的图像分类技术、语音技术、搜索技术等等,以方便易用为原则,开发了 “慧眼识垃圾”的微信小程序。该微信小程序实现垃圾拍照分类、语音输入分类等多项功能,便于用户在日常生活中合理、正确、便捷地进行有关垃圾分类的活动。同时,利用人脸识别检测技术,在用户首次登陆微信小程序时录入人脸信息,并基于此连接个人数据库,同个人进行垃圾分类的行为记录相联系。本作品充分考虑用户体验和使用便捷度,垃圾分类模型预测精度达到90%以上,涵盖日常生活中绝大多数的垃圾类别,确保垃圾分类全过程的高效进行以及用户的良好使用体验。人脸识别检测模型达到96.4%以上,对政府进行个人行为管理与监督提供了有力的保障。

软件架构

bd24c1e429a0b473a64b049bd2fe0c39.png

关键技术

基于PaddleX的垃圾分类

  Paddle X作为飞桨(PaddlePaddle)全流程开发套件,以低代码形式支持开发者快速实现项目落地。Paddle X集成飞桨智能视觉领域图像分类、目标检测、语义分割、实例分割任务能力,将深度学习开发全流程从数据准备、模型训练与多端部署端到端打通,并提供统一任务API接口,帮助开发者实践落地。

  为了提高模型的泛化性和鲁棒性,本作品在训练过程中分别加入了 RandomCrop、RandomVerticalFlip、RandomHorizontalFlip 、RandomDistort和Normalize等多种数据增强方式,分别对数据集中的图像进行随机剪裁、以一定的概率对图像进行随机垂直和水平翻转以及以一定的概率对图像进行随机像素内容变换和对图像进行标准化等操作。

  从模型在验证集中的结果来看,其精度可达94%以上,具有较好的识别能力,故模型具备作品的可行性和有效性。

基于PaddleSlim敏感度分析的剪枝策略

  PaddleSlim是一个模型压缩工具库,包括模型裁剪、定点量化、只是蒸馏、超参数搜索和模型结构搜索等一系列模型压缩策略。

  由于本作品训练得到的模型体积较大,预测速度较为缓慢,不足以满足端测、移动端部署场景下的性能需求,故采用 PaddleSlim 的基于敏感度的通道裁剪算法[7]对模型进行裁剪,即通过不同层对剪枝的敏感度来决定裁剪比例,每层敏感度的计算方法是使用不同裁剪比例对该层进行剪枝,评估剪枝后模型在验证集上的精度损失大小,对于剪枝比例越大,但精度损失越小的层,认为其敏感度越低,可以进行较大比例的裁剪。

  经模型裁剪后,在不影响模型在本作品中的实际预测精度的前提下,模型体积得到有效降低,裁剪约 46.60%,预测速度较之前有显著提升。

基于PaddleHub的人脸识别检测

  PaddleHub[16]能够帮助开发者便捷地获取PaddlePaddle生态下的预训练模型,完成模型的管理和预测。配合使用Fine-tune API,可以基于大规模预训练模型快速完成迁移学习,让预训练模型能更好地服务于用户特定场景的应用。

PyramidBox-Lite

  PyramidBox-Lite基于2018年百度发表于计算机视觉顶级会议ECCV 2018的论文《PyramidBox: A Context-assisted Single Shot Face Detector》而研发的轻量级模型。

  PyramidBox主要提出了一种基于语境辅助的单次人脸检测新方法——Pyramid Box。基于语境的重要性,文章从以下三个方面改进语境信息的利用。首先,文章作者设计了一种全新的语境anchor,通过半监督的方法来监督高层级语境特征学习,即PyramidAnchors。其次,文章提出了一种低层次级特征金字塔网络,将充分的高层级语境语义特征和低层级面部特征结合在一起,使PyramidBox能够一次性预测所有尺寸的人脸。再次,我们引入了语境敏感结构,扩大预测网络的容量,以提高最终的输出准确率。此外,文章还采用“数据—anchor—采样”的方法来对不同尺寸的训练样本进行扩充,增加了较小人脸训练数据的多样性。PyramidBox充分利用语境的价值,在两个常用人脸检测基准——FDDB和WIDER FACE上表现非凡。

  PyramidBox-Lite在基于主干网络FaceBoxes,对于光照、口罩遮挡、表情变化、尺度变化等常见问题具有很强的鲁棒性,符合垃圾分类存在极大的不确定环境情况下的使用。此外,该模型是针对于移动端优化过的模型,适合部署于移动端或者边缘检测的设备上,对于本系统具有较大的适应性。

人脸验证

  人脸验证任务,即验证当前图片中的人脸是否为数据库中已存在的某个人的人脸。此任务一般存在两种实现方式:  1、直接分类,即分辨是准确的哪个人,继而输出标签;
  2、转换为二分类问题,即分辨两张人脸照片组成的图片对中是否来自同一个人,继而输出置信度。
  由于第一种方式存在诸多缺点,例如:当模型训练完成后,无法随时加入新的人,较为死板,动态性较差;数据库中需要采集较为宽泛的人脸储备,实现难度大。故本作品采取第二种方式来实现人脸验证。
  将人脸验证转换为二分类问题,使用孪生网络(Siamese Network)实现。首先,通过同一个CNN网络将人脸图片进行相同的编码,嵌入一个高维的向量空间。然后,使用softmax loss作为损失函数直接对两个样本嵌入向量的拼接做二分类训练,使模型能够直接输出两个相同样本之间的相似度,当相似度达到一定的阈值后即判断是否为同一个人。

基于Tyadmin的管理端开发

  Tyadmin是Django基于Models的管理后台前后端生成工具,其主要由Django Restful Framework和Ant Design Pro V4驱动。

  Tyadmin在Model设计完备的基础上,能够自动生成前后端管理后台,实现页面接口全自动对接,包括登录验证、修改密码、Dashboard数据统计等多项功能。其支持包括账号、邮箱登录的多种登录方式;内嵌自动dashboard,能够自动注册现有的model count数据;实现全自动的列表展示、增删改查、筛选搜索和导出Excel,方便管理端管理和查询相关数据。

  基于此,本作品使用Tyadmin实现供政府端监管、查询的管理后台,通过连通数据库,将数据库中的数据清晰明了地展现给政府监管部门,方便有关部门统计相关地区的垃圾分类数据、监管某地区的垃圾分类具体情况,继而指定切实合理的垃圾分类政策。

  • 全部 代码  ,数据 获取方式:

  • 关注微信公众号 datayx  然后回复 垃圾分类  即可获取。

安装教程

  1. 下载本系统源代码文件夹放置在Windows系统C盘目录下;

  2. 安装python依赖库:pip install -r requestment.txt;

  3. 将garbage_model.zip解压到代码文件夹;

  4. 打开Cmd进入本作品文件夹下.

  5. 执行python manage.py makemigrations;

  6. 执行python manage.py migrate;

  7. 执行python manage.py createsuperuser # 创建一个可以登入后台的用户

  8. 执行python manage.py runserver # 默认运行在8000端口

  9. 打开开发者工具,导入系统文件夹下wx_mini_app文件夹并运行,即可运行小程序端;

  10. 打开浏览器,输入http://127.0.0.1:8000/xadmin/ 输入账号、密码,即可进入后台管理端。

效果代表图及B站展示视频

1c58a4b362f5a7a5e9558688f84cff14.jpeg

9befe261df71a32d40a4a24a41a4077c.jpeg

e7e2ffe912e5c3623e2d8664bf299628.jpeg

7d72832b0d17a43994e2a9f2f3bb0b6e.jpeg

67e6b31bfa09b39de7966c59bc3d431f.jpeg

机器学习算法AI大数据技术搜索公众号添加: datanlp长按图片,识别二维码
阅读过本文的人还看了以下文章:
TensorFlow 2.0深度学习案例实战基于40万表格数据集TableBank,用MaskRCNN做表格检测《基于深度学习的自然语言处理》中/英PDFDeep Learning 中文版初版-周志华团队【全套视频课】最全的目标检测算法系列讲解,通俗易懂!《美团机器学习实践》_美团算法团队.pdf《深度学习入门:基于Python的理论与实现》高清中文PDF+源码《深度学习:基于Keras的Python实践》PDF和代码特征提取与图像处理(第二版).pdfpython就业班学习视频,从入门到实战项目2019最新《PyTorch自然语言处理》英、中文版PDF+源码
《21个项目玩转深度学习:基于TensorFlow的实践详解》完整版PDF+附书代码《深度学习之pytorch》pdf+附书源码PyTorch深度学习快速实战入门《pytorch-handbook》【下载】豆瓣评分8.1,《机器学习实战:基于Scikit-Learn和TensorFlow》《Python数据分析与挖掘实战》PDF+完整源码汽车行业完整知识图谱项目实战视频(全23课)李沐大神开源《动手学深度学习》,加州伯克利深度学习(2019春)教材笔记、代码清晰易懂!李航《统计学习方法》最新资源全套!
《神经网络与深度学习》最新2018版中英PDF+源码将机器学习模型部署为REST API
FashionAI服装属性标签图像识别Top1-5方案分享重要开源!CNN-RNN-CTC 实现手写汉字识别yolo3 检测出图像中的不规则汉字
同样是机器学习算法工程师,你的面试为什么过不了?前海征信大数据算法:风险概率预测【Keras】完整实现‘交通标志’分类、‘票据’分类两个项目,让你掌握深度学习图像分类VGG16迁移学习,实现医学图像识别分类工程项目
特征工程(一)特征工程(二) :文本数据的展开、过滤和分块特征工程(三):特征缩放,从词袋到 TF-IDF特征工程(四): 类别特征特征工程(五): PCA 降维特征工程(六): 非线性特征提取和模型堆叠特征工程(七):图像特征提取和深度学习如何利用全新的决策树集成级联结构gcForest做特征工程并打分?Machine Learning Yearning 中文翻译稿
蚂蚁金服2018秋招-算法工程师(共四面)通过全球AI挑战-场景分类的比赛源码(多模型融合)斯坦福CS230官方指南:CNN、RNN及使用技巧速查(打印收藏)python+flask搭建CNN在线识别手写中文网站
中科院Kaggle全球文本匹配竞赛华人第1名团队-深度学习与特征工程
不断更新资源
深度学习、机器学习、数据分析、python搜索公众号添加: datayx

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/64865.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

垃圾分类资料汇总

目录 一、前言二、垃圾分类话题简介三、当前存在的一些有用参考资源四、当前存在的垃圾分类小程序或者APP五、当前规模比较大的产品六、个人想法参考资料注意事项 一、前言 自从上海实行了垃圾分类之后,垃圾分类这个话题就成为了一个热点话题,比较流行的…

智能垃圾分类

智能垃圾分类 2021.4.9,浙江省举办了第七届工程训练大赛,我们组参加的是垃圾分类的项目,我们组顺利挺进决赛,但是我们看决赛规则并没有标注多种垃圾分类,我们没有完全的准备好应对多种垃圾分类,所以与国赛…

【图像分类数据集】非常全面实用的垃圾分类图片数据集共享

【图像分类数据集】非常全面实用的垃圾分类图片数据集共享 数据集介绍: 训练集 文件夹结构如下(部分: 第0类文件夹下数据展示如下(部分: 测试集 大致如下: 数据集获取方式: 总结&#xf…

VS2019安装不上 怎么弄啊

之前的版本是VS2017,因为笔记本很卡,就重装了个系统 再次安VS的时候就怎么都安不上去,是这样,卡到2/67,就不动了,然后就失败 安的时候选了C++有关的项目,不行,然后什么负载都不选,还是上面那样,还把C盘里的Microsoft.Net文件夹给删了,专门的卸载程序试过、控制面板…

计算机重新启动进不去系统,电脑关机重启进不了系统怎么办

可能还有些网友不太了解电脑关机重启进不了系统的情况,下面就由学习啦小编给你们介绍电脑关机重启进不了系统的原因及解决方法吧,希望能帮到大家哦! 电脑关机重启进不了系统的解决方法一: 蓝屏代码或事件查看器里面的内容普通人是看不懂的&am…

8Manage:分散的软件正在扼杀公司的生产力

在企业领域,数字化不仅仅是指工具能力,而是指用户如何很好地应用他们的知识来做决策,培养关系,建立声誉,以及动员同事、团队。几十年来,企业已经部署了生产力、搜索和协作平台,以提高员工和业务…

中高端洪流已至,酒店企业如何趁势突围

五一小长假即将到来,在人们热切盼望能出行游玩时,频发的疫情却挡住了人们出行的脚步。原本2020年突发的疫情“黑天鹅”,在近两年已经成为常态,对旅游业、酒店业造成严重影响。不过,从酒店行业整体来看,走向…

酒店预订网客户流失分析案例

阅读路线 项目介绍:该项目对某酒店预订网在一段时间内的客户预定信息数据进行分析,其中着重对该网站整体消费情况和用户行为展开分析,找出高价值用户人群,对客户进行用户画像分析,从而为该网站的精细化营销提供相关建议…

宏昆酒店集团携手DataPipeline打造实时数据融合平台,酒店业精益管理的新秘诀

酒店选址数字化审批、刷脸核身和无证核验、多渠道动态联动营销、客户个性化服务......数字化创新正在成为酒店未来的核心竞争力,且目前已成为大、中型酒店的“标配”。把“创新”写入了企业精神的宏昆酒店集团,早已超过业内大部分企业,在数字…

幸福消费成酒店投资趋势红利,荟语酒店凭何打造品牌核心优势

酒店行业经历数十年的高速增长,历经了一轮轮商业嬗变。时至今日,中高端酒店已成为市场中不可忽视的生力军,其中自然幸福系酒店品牌——荟语酒店更是已成为酒店投资市场的瞩目亮点。 那么,在中高端酒店市场中,荟语酒店凭…

数据分析项目实战:酒店需求分析(hotel demand booking)

1 项目背景 使用2015年7月到2017年8月两年的订单数据进行分析,了解酒店预订需求的基本情况,找出导致订单取消的特征。 2 数据初步探索 2.1 数据结构梳理 拿到数据之后,首先看看里面具体有哪些内容,理解每个字段(变…

酒店预订分析

Hotel Booking Analysis 目的:从我们拥有的数据集中创建有意义的估计量,并通过将它们与不同的ML模型和ROC曲线的准确性得分进行比较,来选择预测性能最好的模型。 1- EDA 2- Preprocessing 3- Models and ROC Curve Comparison Logistic …

酒店应用爆发式增长,“API即服务”已成趋势!

据谷歌发布的《2021API经济报告》显示:2020年,近四分之三的组织继续在数字化转型上投资,其中三分之二的组织加大投资或作出战略调整,实行数字优先战略。 而数字化转型的核心,就是将组织的服务、资产和能力打包成互联网…

数据储存技术演进趋势研判

如果以 1987 年 Symmetrix 高端存储产品的诞生作为独立外置存储行业出现的标志,那么外置存储行业已经历了探索、成长和成熟三个阶段。在探索和成长期内,行业发展出大量令人惊叹的创新存储技术,如: SAN/NAS/iSCSI/Object 等存储协议…

英特尔数据存储创新三大技术看点和猜想

“话说天下大势,分久必合,合久必分。周末七国分争,并入于秦。及秦灭之后,楚、汉分争,又并入于汉。汉朝自高祖斩白蛇而起义,一统天下,后来光武中兴,传至献帝,遂分为三国。…

中国存储芯片行业市场发展趋势预测与运营模式分析报告2021~2027年

第1章:中国存储芯片行业发展概况1.1 存储芯片行业发展概述 1.1.1 存储芯片相关定义及分类 (1)存储芯片相关定义 (2)存储芯片主要分类 1.1.2 存储芯片行业发展模式概述 1.2 中国存储芯片行业发展环境分析 1.2.1 行业发展经济环境分析 (1)宏观经济现状分析 (2)经…

内存(DRAM)芯片国产进程

目录 前言1. SSD 缓存作用2. 内存技术2.1 内存存储数据2.2 内存 技术前沿2.2.1 先进DDR5 内存技术2.2.2 专利壁垒2.2.3 先进制程2.2.4 良率 总结 前言 存储芯片生态包含设计环节和制造封装环节还有品牌营销环节。设计环节是核心技术,包含闪存芯片、闪存主控芯片、缓…

芯片行业数据我们打造可靠高效存储设备解决方案

芯片行业,大动能,专为半导体集成电路EDA打造可靠高效存储方案 云计算、物联网、智能制造、大数据、VR、5G等全新数字经济业态引发了产业变革,并带来了创新商业模式,不断催生出更多芯片需求。小小的芯片,不仅推动了社会…

最全芯片产业报告出炉,计算、存储、模拟IC一文扫尽

来源:智东西 最近几年, 半导体产业风起云涌。 一方面, 中国半导体异军突起, 另一方面, 全球产业面临超级周期,加上人工智能等新兴应用的崛起,中美科技摩擦频发,全球半导体现状如何&a…

详解数据存储芯片AT24C02的应用及编程

一.芯片简介 AT24C02是一个2K位串行CMOS E2PROM,内部含有256个8位字节,采用先进CMOS技术实质上减少了器件的功耗。AT24C02有一个8字节页写缓冲器,该器件通过IIC总线接口进行操作,有一个专门的写保护功能。 二&#x…