OpenCV:在图像中添加高斯噪声、胡椒噪声

目录

在图像中添加高斯噪声

高斯噪声的特性

添加高斯噪声的实现

给图像添加胡椒噪声

实现胡椒噪声的步骤


相关阅读

OpenCV:图像处理中的低通滤波-CSDN博客

OpenCV:高通滤波之索贝尔、沙尔和拉普拉斯-CSDN博客

OpenCV:图像滤波、卷积与卷积核-CSDN博客


在图像中添加高斯噪声

高斯噪声是一种常见的噪声类型,其特性是噪声值服从正态分布(Gaussian distribution)。在图像处理中,添加高斯噪声可以用于测试算法的抗噪性能或生成合成数据。

高斯噪声的特性

高斯噪声的数学公式如下:

f(x) = \frac{1}{\sqrt{2\Pi \sigma^{2}}} e ^ -\frac{(x - \mu ) ^ 2}{ 2 \sigma ^2}

其中:μ 为均值,决定噪声的中心值,σ 为标准差,决定噪声的强度。

在图像中,添加高斯噪声通常需要在每个像素值上叠加服从高斯分布的随机值。


添加高斯噪声的实现

以下是使用 Python 和 OpenCV 给图像添加高斯噪声的步骤。

示例代码

import cv2
import numpy as np# 读取图像
image = cv2.imread("D:\\resource\\huaji.jpg")
image = cv2.resize(image, (400, 400))  # 调整大小方便显示# 将图像转换为浮点型
image_float = image.astype(np.float32) / 255.0# 定义高斯噪声参数
mean = 0          # 噪声的均值
stddev = 0.1      # 噪声的标准差# 生成高斯噪声
gaussian_noise = np.random.normal(mean, stddev, image_float.shape)# 将噪声添加到图像
noisy_image = image_float + gaussian_noise# 将结果裁剪到 [0, 1] 范围
noisy_image = np.clip(noisy_image, 0, 1)# 转换回 0-255 范围并转换为 uint8 类型
noisy_image = (noisy_image * 255).astype(np.uint8)# 显示结果
cv2.imshow("image", image)
cv2.imshow("noisy", noisy_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

参数说明

  • mean: 高斯噪声的均值,通常设为 0。
  • stddev: 高斯噪声的标准差,值越大,噪声越明显。
  • np.random.normal: 用于生成服从正态分布的随机噪声。
  • np.clip: 确保像素值仍然在 [0, 1] 或 [0, 255] 的合法范围内。

运行效果


给图像添加胡椒噪声

胡椒噪声 是一种常见的二值噪声类型,与 盐噪声 搭配使用通常称为 椒盐噪声。它会在图像中随机生成黑点,模拟传感器故障或数据传输中的错误。

胡椒噪声的特性

  • 胡椒噪声:像素值变为 黑色(0)。
  • 与 盐噪声(白色点,像素值为 255) 不同,胡椒噪声专注于图像中的随机黑点。

实现胡椒噪声的步骤

以下是添加胡椒噪声的 Python 代码,基于 OpenCV 和 NumPy 实现。

示例代码

import cv2
import numpy as np# 读取图像
image = cv2.imread("D:\\resource\\huaji.jpg")
image = cv2.resize(image, (400, 400))  # 调整大小方便显示# 定义胡椒噪声的比例
pepper_prob = 0.02  # 噪声比例(例如 2%)# 创建随机矩阵
random_matrix = np.random.rand(*image.shape)# 在随机矩阵中将小于噪声比例的点设置为 0(胡椒噪声)
pepper_noise = image.copy()
pepper_noise[random_matrix < pepper_prob] = 0# 显示结果
cv2.imshow("Image", image)
cv2.imshow("Noise", pepper_noise)
cv2.waitKey(0)
cv2.destroyAllWindows()

参数说明

  • pepper_prob: 控制胡椒噪声的密度(比例),值越大,黑点越多。
  • np.random.rand(*gray_image.shape): 生成与图像相同大小的随机矩阵。
  • pepper_noise[random_matrix < pepper_prob] = 0: 将随机矩阵中小于阈值的位置设置为黑色(0)。

运行效果

胡椒噪声通过在图像中引入黑点,模拟了现实中的噪声情况。结合降噪算法(如中值滤波)可以有效去除此类噪声,提高图像质量。通过调整噪声比例,可以测试算法在不同噪声强度下的表现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/6944.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

大数据学习(40)- Flink执行流

&&大数据学习&& &#x1f525;系列专栏&#xff1a; &#x1f451;哲学语录: 承认自己的无知&#xff0c;乃是开启智慧的大门 &#x1f496;如果觉得博主的文章还不错的话&#xff0c;请点赞&#x1f44d;收藏⭐️留言&#x1f4dd;支持一下博主哦&#x1f91…

Prometheus+Grafana监控minio对象存储

1. 安装 MinIO 步骤 1&#xff1a;下载 MinIO 二进制文件 wget https://dl.min.io/server/minio/release/linux-amd64/miniochmod x miniosudo mv minio /usr/local/bin/ 步骤 2&#xff1a;创建数据目录 sudo mkdir -p /data/miniosudo chown -R $USER:$USER /data/minio …

2025数学建模美赛|F题成品论文

国家安全政策与网络安全 摘要 随着互联网技术的迅猛发展&#xff0c;网络犯罪问题已成为全球网络安全中的重要研究课题&#xff0c;且网络犯罪的形式和影响日益复杂和严重。本文针对网络犯罪中的问题&#xff0c;基于多元回归分析和差异中的差异&#xff08;DiD&#xff09;思…

期权帮|如何利用股指期货进行对冲套利?

锦鲤三三每日分享期权知识&#xff0c;帮助期权新手及时有效地掌握即市趋势与新资讯&#xff01; 如何利用股指期货进行对冲套利&#xff1f; 对冲就是通过股指期货来平衡投资组合的风险。它分为正向与反向两种策略&#xff1a; &#xff08;1&#xff09;正向对冲&#xff…

QT 中 UDP 的使用

目录 一、UDP 简介 二、QT 中 UDP 编程的基本步骤 &#xff08;一&#xff09;包含头文件 &#xff08;二&#xff09;创建 UDP 套接字对象 &#xff08;三&#xff09;绑定端口 &#xff08;四&#xff09;发送数据 &#xff08;五&#xff09;接收数据 三、完整示例代…

Android BitmapShader简洁实现马赛克,Kotlin(二)

Android BitmapShader简洁实现马赛克&#xff0c;Kotlin&#xff08;二&#xff09; 这一篇 Android BitmapShader简洁实现马赛克&#xff0c;Kotlin&#xff08;一&#xff09;-CSDN博客 遗留一个问题&#xff0c;xml定义的MyView为wrap_content的宽高&#xff0c;如果改成其…

分布式光纤应变监测是一种高精度、分布式的监测技术

一、土木工程领域 桥梁结构健康监测 主跨应变监测&#xff1a;在大跨度桥梁的主跨部分&#xff0c;如悬索桥的主缆、斜拉桥的斜拉索和主梁&#xff0c;分布式光纤应变传感器可以沿着这些关键结构部件进行铺设。通过实时监测应变情况&#xff0c;能够精确捕捉到车辆荷载、风荷…

uniapp的插件开发发布指南

Hbuilder创建项目 项目根目录创建uni_modules 开发组件 发布到插件市场 填写发布说明&#xff08;未登录需要登录&#xff09; 点击提交 在终端可以看到 发布成功&#xff01; 插件市场查看

大厂案例——腾讯蓝鲸DevOps类应用的设计与实践

蓝鲸体系架构图 蓝鲸CICD应用功能架构 降低DEVOPS门槛—开发者中心 CICD应用需要的后台服务 系列阅读 12306亿级流量架构分析&#xff08;史上最全&#xff09;实现电商平台从业务到架构的治理体系基于主数据驱动的数据治理什么时候需要分表分库&#xff1f;-CSDN博客

Jetson nano 安装 PCL 指南

本指南帮助 ARM64 架构的 Jetson Nano 安装 PCL&#xff08;点云库&#xff09;。 安装步骤 第一步&#xff1a;安装依赖 在终端中运行以下命令&#xff0c;安装 PCL 所需的依赖&#xff1a; sudo apt-get update sudo apt-get install git build-essential linux-libc-dev s…

WPF基础 | WPF 基础概念全解析:布局、控件与事件

WPF基础 | WPF 基础概念全解析&#xff1a;布局、控件与事件 一、前言二、WPF 布局系统2.1 布局的重要性与基本原理2.2 常见布局面板2.3 布局的测量与排列过程 三、WPF 控件3.1 控件概述与分类3.2 常见控件的属性、方法与事件3.3 自定义控件 四、WPF 事件4.1 路由事件概述4.2 事…

JVM堆空间

一、堆空间的核心概述 一个JVM实例只存在一个堆内存&#xff0c;堆也是Java内存管理的核心区域。Java堆区在JVM启动的时候即被创建&#xff0c;其空间大小也就确定了。是JVM管理的最大一块内存空间。 堆内存的大小是可以调节的。堆可以处于物理上不连续的内存空间中&#xff…

【深度学习基础】多层感知机 | 数值稳定性和模型初始化

【作者主页】Francek Chen 【专栏介绍】 ⌈ ⌈ ⌈PyTorch深度学习 ⌋ ⌋ ⌋ 深度学习 (DL, Deep Learning) 特指基于深层神经网络模型和方法的机器学习。它是在统计机器学习、人工神经网络等算法模型基础上&#xff0c;结合当代大数据和大算力的发展而发展出来的。深度学习最重…

数字图像处理:实验五

uu们&#xff01;大家好&#xff0c;欢迎来到数字图像处理第五章节内容的学习&#xff0c;在本章中有关空间滤波的理论学习是十分重要的&#xff0c;所以建议大家要去用心的学习本章&#xff0c;在之后的传感器的相关图像采集时&#xff0c;不可避免的会有噪声等的影响&#xf…

CCF开源发展委员会开源供应链安全工作组2025年第1期技术研讨会顺利举行

点击蓝字 关注我们 CCF Opensource Development Committee 2025年1月17日&#xff0c;CCF开源发展委员会供应链安全工作组&#xff08;CCF-ODC-OSS&#xff09;2025年第一期技术研讨会——“大模型时代的开源供应链安全风控技术”于北京黄大年茶思屋顺利举行。本次研讨会邀请了…

如何进行市场调研?海外问卷调查有哪些类型和示例?

什么是市场研究&#xff1f; 市场研究的目的&#xff0c;就是调查消费者的行为和当时的经济趋势&#xff0c;帮助企业制定和调整经营理念和经营路线&#xff0c;通过收集和分析数据&#xff0c;帮助企业了解其目标市场。 市场调查是通过对潜在客户的分析&#xff0c;来判断品…

DX12 快速教程(4) —— 画钻石原矿

快速导航 新建项目 "004-DrawTexture"纹理贴图纹理采样纹理过滤邻近点采样双线性过滤Mipmap 多级渐远纹理三线性过滤各向异性过滤 纹理环绕LOD 细节层次 开始画钻石原矿吧加载纹理到内存中&#xff1a;LoadTexture什么是 WIC如何用 WIC 读取一帧图片获取图片格式并转…

FPGA实现任意角度视频旋转(二)视频90度/270度无裁剪旋转

本文主要介绍如何基于FPGA实现视频的90度/270度无裁剪旋转&#xff0c;旋转效果示意图如下&#xff1a; 为了实时对比旋转效果&#xff0c;采用分屏显示进行处理&#xff0c;左边代表旋转前的视频在屏幕中的位置&#xff0c;右边代表旋转后的视频在屏幕中的位置。 分屏显示的…

Blazor-选择循环语句

今天我们来说说Blazor选择语句和循环语句。 下面我们以一个简单的例子来讲解相关的语法&#xff0c;我已经创建好了一个Student类&#xff0c;以此类来进行语法的运用 因为我们需要交互性所以我们将类创建在*.client目录下 if 我们做一个学生信息的显示&#xff0c;Gender为…

数据结构——实验八·学生管理系统

嗨~~欢迎来到Tubishu的博客&#x1f338;如果你也是一名在校大学生&#xff0c;正在寻找各种编程资源&#xff0c;那么你就来对地方啦&#x1f31f; Tubishu是一名计算机本科生&#xff0c;会不定期整理和分享学习中的优质资源&#xff0c;希望能为你的编程之路添砖加瓦⭐&…