[NLP]LLM高效微调(PEFT)--LoRA

LoRA

背景

神经网络包含很多全连接层,其借助于矩阵乘法得以实现,然而,很多全连接层的权重矩阵都是满秩的。当针对特定任务进行微调后,模型中权重矩阵其实具有很低的本征秩(intrinsic rank),因此,论文的作者认为权重更新的那部分参数矩阵尽管随机投影到较小的子空间,仍然可以有效的学习,可以理解为针对特定的下游任务这些权重矩阵就不要求满秩。

技术原理

LoRA(论文:LoRA: LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS),该方法的核心思想就是通过低秩分解来模拟参数的改变量,从而以极小的参数量来实现大模型的间接训练。

在涉及到矩阵相乘的模块,在原始的PLM旁边增加一个新的通路,通过前后两个矩阵A,B相乘,第一个矩阵A负责降维,第二个矩阵B负责升维,中间层维度为r,从而来模拟所谓的本征秩(intrinsic rank)。

 可训练层维度和预训练模型层维度一致为d,先将维度d通过全连接层降维至r,再从r通过全连接层映射回d维度,其中,r<<d,r是矩阵的秩,这样矩阵计算就从d x d变为d x r + r x d,参数量减少很多。

在下游任务训练时,固定模型的其他参数,只优化新增的两个矩阵的权重参数,将W跟新增的通路W1两部分的结果加起来作为最终的结果(两边通路的输入跟输出维度是一致的),即h=Wx+BAx。第一个矩阵的A的权重参数会通过高斯函数初始化,而第二个矩阵的B的权重参数则会初始化为零矩阵,这样能保证训练开始时新增的通路BA=0从而对模型结果没有影响。

在推理时,将左右两部分的结果加到一起即可,h=Wx+BAx=(W+BA)x,所以只要将训练完成的矩阵乘积BA跟原本的权重矩阵W加到一起作为新权重参数替换原本PLM的W即可,对于推理来说,不会增加额外的计算资源。

为什么更新ΔW只需要更新较少的参数呢?

现在,让我们解决房间里的大问题:如果我们引入新的权重矩阵,这个参数的效率如何?新矩阵WAWB可以非常小。例如,假设A=100B=500 ,则ΔW的大小为100 × 500 = 50,000。现在,如果我们将其分解为两个较小的矩阵,一个100×5维矩阵WA和一个5×500维矩阵WB。这两个矩阵总共只有5×100+5×500=3000个参数。

作者也在摘要中明确表示,他们采用lora方法微调,相比于GPT-3全量参数微调,可训练参数下降了10000倍,GPU显存需求下降了3倍,而lora微调后的效果,在特定任务上甚至可以媲美全量微调的模型。

为什么一直强调特定任务呢?因为lora基于的假设就是在特定任务上微调时,更新的参数矩阵具有较低的内在维度。可以把lora想象成一个特定能力的装备,而预训练模型是游戏角色本身。在预训练模型(游戏角色)的基础上,特定lora(装备)可以增强对于某一特定任务的表现,但是在其他不相关任务上该lora模块并不会起到作用。如果想同时在多个任务上有媲美全量参数微调模型的表现的话,就得需要针对不同的任务训练不同的ΔW模块(多个装备),最后整合在一起。但是,如果想模型(游戏角色)本身整体变强大,还是全量参数微调更合适。

至于是否适合作为通用指令微调的解决方案,有个问题我也没有搞懂,就是通用的指令样本是否真的有统一的低秩空间表征?这个表征又是什么含义?因为指令微调阶段的样本其实是混合的多任务指令样本,这种情况下lora是否合适,感觉需要更全面的评估.

## 初始化低秩矩阵A和B
self.lora_A.update(nn.ModuleDict({adapter_name: nn.Linear(self.in_features, r, bias=False)}))
self.lora_B.update(nn.ModuleDict({adapter_name: nn.Linear(r, self.out_features, bias=False)}))
self.scaling[adapter_name] = lora_alpha / r## 向前计算
result = F.linear(x, transpose(self.weight, self.fan_in_fan_out), bias=self.bias)
result += (self.lora_B[self.active_adapter](self.lora_A[self.active_adapter](self.lora_dropout[self.active_adapter](x)))* self.scaling[self.active_adapter]
)

此外,Transformer的权重矩阵包括Attention模块里用于计算query, key, value的Wq,Wk,Wv以及多头attention的Wo,以及MLP层的权重矩阵,LoRA只应用于Attention模块中的4种权重矩阵,而且通过消融实验发现同时调整 Wq 和 Wv 会产生最佳结果。

input_dim = 768  # e.g., the hidden size of the pre-trained model
output_dim = 768  # e.g., the output size of the layer
rank = 8  # The rank 'r' for the low-rank adaptationW = ... # from pretrained network with shape input_dim x output_dimW_A = nn.Parameter(torch.empty(input_dim, rank)) # LoRA weight A
W_B = nn.Parameter(torch.empty(rank, output_dim)) # LoRA weight B# Initialization of LoRA weights
nn.init.kaiming_uniform_(W_A, a=math.sqrt(5))
nn.init.zeros_(W_B)def regular_forward_matmul(x, W):h = x @ W
return hdef lora_forward_matmul(x, W, W_A, W_B):h = x @ W  # regular matrix multiplicationh += x @ (W_A @ W_B)*alpha # use scaled LoRA weights
return h

在上面的伪代码中,alpha是一个缩放因子,用于调整组合结果(原始模型输出加上低秩自适应)的大小。这平衡了预训练模型的知识和新的特定于任务的适应——默认情况下,alpha通常设置为 1。另请注意,虽然W A被初始化为小的随机权重,但W B被初始化为 0,因此
训练开始时ΔW = W AW B = 0 ,这意味着我们以原始权重开始训练。

实验还发现,保证权重矩阵的种类的数量比起增加隐藏层维度r更为重要,增加r并不一定能覆盖更加有意义的子空间。

Rank r 的设置

一个很直接的问题就是:在实践中,rank 应该设为多少比较合适呢?

作者做了几组实验进行比较,结果发现 rank 可以很低,不超过8就很 OK 了,甚至是1也挺好..

关于秩的选择,通常情况下,rank为4,8,16即可。

通过实验也发现,在众多数据集上LoRA在只训练极少量参数的前提下,最终在性能上能和全量微调匹配,甚至在某些任务上优于全量微调。

减少推理开销

请注意,在实践中,如果我们在训练后保持原始权重W和矩阵W AW B分开,如上所示,我们将在推理过程中产生小的效率损失,因为这引入了额外的计算步骤。相反,我们可以在训练后通过W' = W + WA WB更新权重,这类似于前面提到的W' = W + ΔW


然而,将权重矩阵W AW B分开可能具有实际优势。例如,假设我们希望将我们的预训练模型作为各种客户的基础模型,并且我们希望从基础模型开始为每个客户创建一个经过微调的 LLM。在这种情况下,我们不需要为每个客户存储完整的权重矩阵W',其中存储模型的所有权重W' = W + WA WB对于 LLM 来说可能非常大,因为 LLM 通常有数十亿到数万亿个权重参数。因此,我们可以保留原始模型W,只需要存储新的轻量级矩阵WAWB


为了用具体数字说明这一点,一个完整的 7B LLaMA 检查点需要 23GB 的存储容量,而如果我们选择r=8的等级,LoRA 权重可以小到 8MB 。

利用 LoRA可以如下优点:

  1. 在面对不同的下游任务时,仅需训练参数量很少的低秩矩阵,而预训练权重可以在这些任务之间共享
  2. 省去了预训练权重的梯度和相关的 optimizer states,大大增加了训练效率降低了硬件要求
  3. 训练好的低秩矩阵可以合并(merge)到预训练权重中,多分支结构变为单分支,从而达到没有推理延时的效果;
  4. 与之前的一些参数高效的微调方法(如 Adapter, Prefix-Tuning 等)互不影响,并且可以相互结合

QLoRA和AdaLoRA

当红炸子鸡 LoRA,是当代微调 LLMs 的正确姿势? - 知乎 (zhihu.com)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/73492.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

记一次centos 磁盘挂载过程

前言 最近买了云服务器磁盘&#xff0c;需要挂载&#xff0c;一下就由大猿来记录这次过程。 挂载过程 查看磁盘挂载情况 查看物理硬盘 lsblkfdisk -l标记分区 fdisk /dev/vdb格式化分区 xfs mkfs.xfs /dev/vdb mkfs.xfs -f /dev/vdbext4 mkfs.ext4 /dev/vdbxfs 和 ex…

HTTP——HTTP报文内的HTTP信息

HTTP 通信过程包括从客户端发往服务器端的请求及从服务器端返回客户端的响应。本章就让我们来了解一下请求和响应是怎样运作的。 HTTP 一、HTTP报文二、请求报文及响应报文的结构三、编码提升传输速率1、报文主体和实体主题的差异2、压缩传输的内容编码3、分割发送的分块传输编…

Spring MVC异步上传、跨服务器上传和文件下载

一、异步上传 之前的上传方案&#xff0c;在上传成功后都会跳转页面。而在实际开发中&#xff0c;很多情况下上传后不进行跳转&#xff0c;而是进行页面的局部刷新&#xff0c;比如&#xff1a;上传头像成功后将头像显示在网页中。这时候就需要使用异步文件上传。 1.1 JSP页面 …

为了规避风险,如何给大模型打水印?

大型语言模型&#xff0c;如最近开发的ChatGPT&#xff0c;可以撰写文件、创建可执行代码和回答问题&#xff0c;通常具有人类般的能力。 随着这些大模型的应用越来越普遍&#xff0c;越来越大的风险也显现了出来&#xff0c;它们可能被用于恶意目的。这些恶意目的包括&#xf…

【漏洞复现】Metabase 远程命令执行漏洞(CVE-2023-38646)

文章目录 前言声明一、漏洞介绍二、影响版本三、漏洞原理四、漏洞复现五、修复建议 前言 Metabase 0.46.6.1之前版本和Metabase Enterprise 1.46.6.1之前版本存在安全漏洞&#xff0c;未经身份认证的远程攻击者利用该漏洞可以在服务器上以运行 Metabase 服务器的权限执行任意命…

虹科活动 | 走进宇通客车-汽车新供应链技术展精彩回顾

引言 7月27日&#xff0c;走进宇通客车-汽车新供应链技术展于宇通研发中心成功举办&#xff0c;本次展会中虹科为大家带来了一体化车载天线与车辆GNSS仿真测试方案&#xff0c;感谢您前来探讨与交流&#xff01; 精彩产品一览 车辆GNSS仿真测试方案 虹科高性能GNSS模拟器具有灵…

如何搭建WordPress博客网站,并且发布至公网上?

如何搭建WordPress博客网站&#xff0c;并且发布至公网上&#xff1f; 文章目录 如何搭建WordPress博客网站&#xff0c;并且发布至公网上&#xff1f;概述前置准备1 安装数据库管理工具1.1 安装图形图数据库管理工具&#xff0c;SQL_Front 2 创建一个新数据库2.1 创建数据库2.…

振弦传感器信号转换器应用山体滑坡安全监测

振弦传感器信号转换器应用山体滑坡安全监测 随着人类文明的进步&#xff0c;自然灾害对人们的生活和财产安全造成的威胁也越来越大。山体滑坡作为自然灾害中的一种&#xff0c;给人们的生活和财产安全带来了极大的威胁。因此&#xff0c;进行山体滑坡的安全监测显得尤为重要。振…

Chat模块封装

封装保存用户类 utils/chat.js class Chat{constructor(){// 当前登录的用户this._user null;// 会话数组 和多个人this._sessions []; //user message// 当前会话 &#xff08;和谁在聊天&#xff09;this._current_session null;}setUser(user){this._user user} }exp…

C++中数据的输入输出介绍

C中数据的输入输出介绍 C中数据的输入输出涉及到的文件 <iostream>&#xff1a;这是C标准库中最常用的头文件之一&#xff0c;包含了进行标准输入输出操作的类和对象&#xff0c;如std::cin、std::cout、std::endl等。 <iomanip>&#xff1a;该头文件提供了一些用…

免费商用 Meta 发布开源大语言模型 Llama 2

Meta 和微软深度合作&#xff0c;正式推出下一代开源大语言模型 Llama 2&#xff0c;并宣布免费提供给研究和商业使用。 Llama 2 论文地址&#xff1a;Llama 2: Open Foundation and Fine-Tuned Chat Models 据介绍&#xff0c;相比于 Llama 1&#xff0c;Llama 2 的训练数据多…

AD21 PCB设计的高级应用(九)3D PDF的输出

&#xff08;九&#xff09;3D PDF的输出 1.3D PDF的输出2.制作PCB 3D视频 1.3D PDF的输出 Altium Designer 19 带有 3D输出功能,能够直接将 PCB 的 3D效果输出到 PDF 中。 ’(1)打开带有 3D 模型的 PCB 文件,执行菜单栏中“文件”→“导出”→“PDF3D”命令&#xff0c;选择…

计算机网络 day7 扫描IP脚本 - 路由器 - ping某网址的过程

目录 network 和 NetworkManager关系&#xff1a; 实验&#xff1a;编写一个扫描脚本&#xff0c;知道本局域网里哪些ip在使用&#xff0c;哪些没有使用&#xff1f; 使用的ip对应的mac地址都要显示出来 计算机程序执行的两种不同方式&#xff1a; shell语言编写扫描脚本 …

【Linux】自动化构建工具-make/Makefile详解

前言 大家好吖&#xff0c;欢迎来到 YY 滴 Linux系列 &#xff0c;热烈欢迎&#xff01;本章主要内容面向接触过Linux的老铁&#xff0c;主要内容含 欢迎订阅 YY 滴Linux专栏&#xff01;更多干货持续更新&#xff01;以下是传送门&#xff01; 订阅专栏阅读&#xff1a;YY的《…

OpenHarmony ArkUI 如何调用相机

​ ArkUI调用相机和调用相册其实是一个思路&#xff0c;只用修改一个地方。 我们继续来说相机调用&#xff0c;ArkUI没办法自己获取相机&#xff0c;所以得依靠一下ohos.multimedia.camera 相机开发指导 介绍 本指导主要展示了调用相机的调用过程&#xff0c;以及调用相机的…

Unity Shader - if 和 keyword 的指令比较

文章目录 环境TestingIf4Sampleunity shaderlab 中的 TestingIf4Sample.shadergraphics analyzer 中的 TestingIf4Sample.glsl TestingKW4Sampleunity shaderlab 中的 TestingKW4Sample.shadergraphics analyzer 中的 TestingKW4Sample.glsl 比较 环境 Unity : 2020.3.37f1 Pi…

网络安全(零基础)自学

一、网络安全基础知识 1.计算机基础知识 了解了计算机的硬件、软件、操作系统和网络结构等基础知识&#xff0c;可以帮助您更好地理解网络安全的概念和技术。 2.网络基础知识 了解了网络的结构、协议、服务和安全问题&#xff0c;可以帮助您更好地解决网络安全的原理和技术…

新的恶意软件 WikiLoader 针对意大利组织

研究人员发现了一种新的恶意软件&#xff0c;名为 WikiLoader 恶意软件。之所以这样命名&#xff0c;是因为它向维基百科发出请求&#xff0c;希望得到内容中包含 "The Free "字符串的响应。 WikiLoader 恶意软件的主要目标是意大利企业及组织。 WikiLoader 是一种…

首页和图表的定制

首页就是刚刚那些在静态资源扫描文件下叫 index.html 的文件 头像

wolfSSL5.6.3 虚拟机ubuntu下编译运行记录(踩坑填坑)

网上相关教程很多(包括wolfSSL提供的手册上也是如此大而化之的描述)&#xff0c;大多类似如下步骤&#xff1a; ./configure //如果有特殊的要求的话可以在后面接上对应的语句&#xff0c;比如安装目录、打开或关闭哪些功能等等 make make install 然后结束&#xff0c;大体…