概率论与数理统计复习总结3

概率论与数理统计复习总结,仅供笔者复习使用,参考教材:

  • 《概率论与数理统计》/ 荣腾中主编. — 第 2 版. 高等教育出版社
  • 《2024高途考研数学——概率基础精讲》王喆

概率论与数理统计实际上是两个互补的分支:概率论已知随机变量及其概率分布 的基础上去描述随机现象的统计规律、挖掘随机变量的数字特征与数学性质、计算随机事件的发生概率;数理统计 则是通过随机现象来研究其统计规律性,即通过收集、整理和分析随机变量的观测数据,对随机变量的性质和特征做出合理的推断或预测。

本文主要内容为:数理统计2;
概率论 部分见 概率论与数理统计复习总结1;
数理统计1 部分见 概率论与数理统计复习总结2;
数理统计2 部分见 概率论与数理统计复习总结3;

目录

  • 八. 假设检验
    • 1. 假设检验的基本原理
    • 2. 假设检验的步骤
    • 3. 假设检验的两类错误
    • 4. 参数假设检验
      • 4.1 单个正态总体的参数假设检验

八. 假设检验

假设检验利用样本信息对总体的某种假设进行检验,用于推断数据样本中的差异是否真实存在或是由于随机变异导致的。假设检验一般分为参数假设检验与非参数假设检验,本节主要介绍参数假设检验,即对总体分布中未知参数的假设检验。

1. 假设检验的基本原理

假设检验的基本原理是通过样本数据来对总体特征提出的假设进行推断,通过比较观察到的样本统计量(例如平均值、比例、方差等)与假设中的理论预期值,来判断样本数据是否支持或反对该假设。这样的假设叫做原假设或零假设。

  • 原假设:也叫零假设,记为 H 0 H_0 H0。原假设是关于总体特征的默认假设,通常表述为无效、无差异或无影响的假设,如 μ = 8000 \mu=8000 μ=8000 μ 1 = μ 2 \mu_1=\mu_2 μ1=μ2 等;
  • 备择假设:记为 H 1 H_1 H1。备择假设一般是我们希望支持的假设,它表述了我们认为有足够证据支持的观点或猜测。在假设检验中,我们试图通过数据证明备择假设成立,从而拒绝原假设。备择假设可以是双侧的(two-tailed),表明总体特征与原假设有明显差异;也可以是单侧的(one-tailed),表明总体特征在某个方向上显著大于或小于原假设。如 μ ≠ 8000 \mu \neq 8000 μ=8000 μ 1 ≠ μ 2 \mu_1 \neq \mu_2 μ1=μ2 等;
  • 显著性水平:假设检验中事先设定的一个临界值,通常用符号 α \alpha α 表示,用于判断在样本数据中观察到的统计显著性,决定了在假设检验中拒绝原假设的标准,一般取 0.05 或 0.01;
  • 拒绝域:样本数据的一个子集,记为 X 0 \mathscr{X}_0 X0。当样本数据落入这个区域时,我们将拒绝原假设,因为拒绝域包含的样本数据在原假设成立的情况下发生的概率较小,我们认为这样的结果对原假设提供了足够的反对证据,从而拒绝原假设。通常,拒绝域的边界由显著性水平 α \alpha α 确定;
  • 接受域:样本数据的另一个子集,也是拒绝域的补集,记为 X 0 ‾ \overline{\mathscr{X}_0} X0。当样本数据落入这个区域时,我们将接受原假设,因为接受域包含的样本数据在原假设成立的情况下发生的概率较大,我们认为这样的结果并不足以提供充分证据来拒绝原假设;

2. 假设检验的步骤

  1. 提出统计假设:明确原假设和备择假设;
  2. 选择检验统计量:对原假设 H 0 H_0 H0 通过 检验统计量 W = W ( X 1 , X 2 ⋯ , X n ) W=W\left(X_1, X_2 \cdots, X_n\right) W=W(X1,X2,Xn) 的判断需要确定 H 0 H_0 H0 成立条件下统计量 W W W 的精确分布或极限分布,以便能根据显著性水平 α \alpha α 确定 H 0 H_0 H0 的拒绝域;

  一般地,针对正态总体 N ( μ , σ 2 ) N\left(\mu, \sigma^2\right) N(μ,σ2) 的参数 μ \mu μ 提出假设 H 0 : μ = μ 0 H_0: \mu=\mu_0 H0:μ=μ0,则选择统计量 U = X ˉ − μ 0 σ n ( σ 2 U=\frac{\bar{X}-\mu_0}{\sigma} \sqrt{n}\left(\sigma^2\right. U=σXˉμ0n (σ2 已知) 或 T = X ˉ − μ 0 S n T=\frac{\bar{X}-\mu_0}{S} \sqrt{n} T=SXˉμ0n ( σ 2 \sigma^2 σ2 末知);针对正态总体 N ( μ , σ 2 ) N\left(\mu, \sigma^2\right) N(μ,σ2) 的参数 σ 2 \sigma^2 σ2 提出假设 H 0 : σ 2 = σ 0 2 H_0: \sigma^2=\sigma_0^2 H0:σ2=σ02,则选择统计量 χ 2 = ( n − 1 ) S 2 σ 0 2 \chi^2=\frac{(n-1) S^2}{\sigma_0^2} χ2=σ02(n1)S2;针对总体 B ( 1 , p ) B(1, p) B(1,p) 的参数 p p p 提出假设 H 0 : p = p 0 H_0: p=p_0 H0:p=p0,则选择统计量 U = X ˉ − p 0 p 0 ( 1 − p 0 ) n U=\frac{\bar{X}-p_0}{\sqrt{p_0\left(1-p_0\right)}} \sqrt{n} U=p0(1p0) Xˉp0n 等。通常检验方法由统计量的分布来命名,如 U U U 检验法、 t t t 检验法、 χ 2 \chi^2 χ2 检验法、 F F F 检验法等。

  1. 确立拒绝域形式和拒绝域:通过备择假设 H 1 H_1 H1 来确立拒绝域的形式。由显著性水平 α \alpha α,拒绝域 X 0 \mathscr{X}_0 X0 的形式,检验统计量及分布和 P { ( X 1 , X 2 , ⋯ , X n ) ∈ X 0 ∣ H 0 成立  } ⩽ α P\left\{\left(X_1, X_2, \cdots, X_n\right) \in \mathscr{X}_0 \mid H_0 \text { 成立 } \right\} \leqslant \alpha P{(X1,X2,,Xn)X0H0 成立 }α 可确定待定常数 c c c,这就确定了拒绝域 X 0 \mathscr{X}_0 X0,通常 α \alpha α 选取 0.01,0.05 或 0.10;

  一般地,如果 H 1 : μ ≠ μ 0 H_1: \mu \neq \mu_0 H1:μ=μ0 表示总体均值 μ \mu μ μ 0 \mu_0 μ0 有显著差异,用 X ˉ \bar{X} Xˉ 去估计参数 μ \mu μ 和引人待定常数 c c c 预估差异大小,即小概率事件为 { X ˉ − μ 0 < − c } ∪ { X ˉ − μ 0 > \left\{\bar{X}-\mu_0<-c\right\} \cup\left\{\bar{X}-\mu_0>\right. {Xˉμ0<c}{Xˉμ0> c } c\} c},那么拒绝域形式为 { ∣ X ˉ − μ 0 ∣ > c } \left\{\left|\bar{X}-\mu_0\right|>c\right\} { Xˉμ0 >c},称 H 1 : μ ≠ μ 0 H_1: \mu \neq \mu_0 H1:μ=μ0 为双侧假设检验问题;如果 H 1 : μ > μ 0 H_1: \mu>\mu_0 H1:μ>μ0,则选择拒绝域 { X ˉ − μ 0 > c } \left\{\bar{X}-\mu_0>c\right\} {Xˉμ0>c},称 H 1 : μ > μ 0 H_1: \mu>\mu_0 H1:μ>μ0 为单侧假设检验问题。

  1. 作出判断或决策:根据抽样信息,计算检验统计量的样本值 w = W ( x 1 , x 2 , ⋯ , x n ) w=W\left(x_1, x_2, \cdots, x_n\right) w=W(x1,x2,,xn)。若 ( x 1 \left(x_1\right. (x1, x 2 , ⋯ , x n ) ∈ X 0 \left.x_2, \cdots, x_n\right) \in \mathscr{X}_0 x2,,xn)X0,则拒绝 H 0 H_0 H0,接受 H 1 H_1 H1;否则接受 H 0 H_0 H0

3. 假设检验的两类错误

由于抽样的随机性和小概率原理,假设检验所作出的判断可能与事实不符合,出现推断错误。把拒绝 H 0 H_0 H0 可能犯的错误称为第Ⅰ类错误或弃真错误;把接受 H 0 H_0 H0 的判断可能犯的错误称为第Ⅱ类错误或纳伪错误。

    \真实情况
假设检验结果\      
H 0 H_0 H0 成立 H 0 H_0 H0 不成立
拒绝 H 0 H_0 H0犯第Ⅰ类错误(弃真错误)推断正确
接受 H 0 H_0 H0推断正确犯第Ⅱ类错误(纳伪错误)
  • 第Ⅰ类错误:原假设 H 0 H_0 H0 为真,由于样本的随机性,使样本观测值落入拒绝域 X 0 \mathscr{X}_0 X0 中,判断为拒绝 H 0 H_0 H0。错误的概率记为 α \alpha α
    α = P { 拒绝 H 0 ∣ H 0 成立 } = P { ( X 1 , X 2 , ⋯ , X n ) ∈ X 0 ∣ H 0 成立 } \alpha = P\{拒绝 H_0 | H_0 成立\} = P\left\{\left(X_1, X_2, \cdots, X_n\right) \in \mathscr{X}_0 \mid H_0 成立 \right\} α=P{拒绝H0H0成立}=P{(X1,X2,,Xn)X0H0成立}
  • 第Ⅱ类错误:原假设 H 0 H_0 H0 为假,判断为接受 H 0 H_0 H0;错误的概率记为 β \beta β
    β = P { 接受 H 0 ∣ H 0 不成立 } = P { ( X 1 , X 2 , ⋯ , X n ) ∈ X 0 ‾ ∣ H 0 不成立 } \beta = P\{接受 H_0 | H_0 不成立\} = P\left\{\left(X_1, X_2, \cdots, X_n\right) \in \overline{\mathscr{X}_0} \mid H_0 不成立 \right\} β=P{接受H0H0不成立}=P{(X1,X2,,Xn)X0H0不成立}

  在样本容量固定的条件下,减少犯一类错误的概率,就会增加犯另一类错误的概率。举例如下:
在这里插入图片描述

4. 参数假设检验

实际问题中很多随机变量服从或近似服从正态分布,因此这节重点介绍单个正态总体的参数假设检验。

4.1 单个正态总体的参数假设检验

  • 参数 μ \mu μ 的假设检验:
    在这里插入图片描述

  • 参数 σ 2 \sigma^2 σ2 的假设检验( μ \mu μ 未知):
    在这里插入图片描述

  拒绝域同时在数轴左右两侧的假设检验称为 双侧假设检验 或双尾假设检验,拒绝域在数轴左侧或右侧的假设检验分别称为左侧假设检验或右侧假设检验,统称为 单侧检验 或单尾检验。双侧假设检验关注的是 总体参数是否有明显的变化,而单侧假设检验关注 总体参数明显变化的方向,左侧检验关注总体参数是否明显减少,右侧检验关注总体参数是否明显增加。举例如下:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/73584.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【使用维纳滤波进行信号分离】基于维纳-霍普夫方程的信号分离或去噪维纳滤波器估计(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

error: #5: cannot open source input file “core_cmInstr.h“

GD32F103VET6和STM32F103VET6引脚兼容。 GD32F103VET6工程模板需要包含头文件&#xff1a;core_cmInstr.h和core_cmFunc.h&#xff0c;这个和STM32F103还是有区别的&#xff0c;否则会报错&#xff0c;如下&#xff1a; error: #5: cannot open source input file "core…

两个镜头、视野、分辨率不同的相机(rgb、红外)的视野校正

文章目录 背景实际效果查找资料资料1资料2 解决方案最终结果 背景 目前在做的项目用到两个摄像头&#xff0c;一个是热成像摄像头、另一个是普通的rgb摄像头。 一开始的目标是让他们像素级重合&#xff0c;使得点击rgb图像时&#xff0c;即可知道其像素对应的温度。但是在尝试…

js中的设计模式

设计模式 代码整体的结构会更加清楚&#xff0c;管理起来会更加方便&#xff0c;更好地维护 设计模式是一种思想 发布订阅 模块化开发 导入很多模块 容器即数组存储未来要执行的方法&#xff0c;同addEventListener 数组塌陷问题* 由于删除了元素&#xff0c;导致从删除元素的位…

ppt怎么压缩到10m以内?分享好用的压缩方法

PPT是一种常见的演示文稿格式&#xff0c;有时候文件过大&#xff0c;我们会遇到无法发送、上传的现象&#xff0c;这时候简单的解决方法就是压缩其大小&#xff0c;那怎么才能将PPT压缩到10M以内呢&#xff1f; PPT文件大小受到影响的主要因素就是以下几点&#xff1a; 1、图…

VR全景旅游,智慧文旅发展新趋势!

引言&#xff1a; VR全景旅游正在带领我们踏上一场全新的旅行体验。这种沉浸式的旅行方式&#xff0c;让我们可以足不出户&#xff0c;却又身临其境地感受世界各地的美景。 一&#xff0e;VR全景旅游是什么&#xff1f; VR全景旅游是一种借助虚拟现实技术&#xff0c;让用户…

AssetBundle学习

官方文档&#xff1a;AssetBundle 工作流程 - Unity 手册 (unity3d.com) 之前写的博客&#xff1a;AssetBundle学习_zaizai1007的博客-CSDN博客 使用流程图&#xff1a; 1&#xff0c;指定资源的AssetBundle属性 &#xff08;xxxa/xxx&#xff09;这里xxxa会生成目录&…

Arcgis 分区统计majority参数统计问题

利用Arcgis 进行分区统计时&#xff0c;需要统计不同矢量区域中栅格数据的众数&#xff08;majority&#xff09;&#xff0c;出现无法统计majority参数问题解决 解决&#xff1a;利用copy raster工具&#xff0c;将原始栅格数据 64bit转为16bit

iOS 应用上架流程详解

iOS 应用上架流程详解 欢迎来到我的博客&#xff0c;今天我将为大家分享 iOS 应用上架的详细流程。在这个数字化时代&#xff0c;移动应用已经成为了人们生活中不可或缺的一部分&#xff0c;而 iOS 平台的 App Store 则是开发者们发布应用的主要渠道之一。因此&#xff0c;了解…

Vision Transformer (ViT):图像分块、图像块嵌入、类别标记、QKV矩阵与自注意力机制的解析

作者&#xff1a;CSDN _养乐多_ 本文将介绍Vision Transformers &#xff08;ViT&#xff09;中的关键点。包括图像分块&#xff08;Image Patching&#xff09;、图像块嵌入&#xff08;Patch Embedding&#xff09;、类别标记、&#xff08;class_token&#xff09;、QKV矩…

微服务 云原生:搭建 K8S 集群

为节约时间和成本&#xff0c;仅供学习使用&#xff0c;直接在两台虚拟机上模拟 K8S 集群搭建 踩坑之旅 系统环境&#xff1a;CentOS-7-x86_64-Minimal-2009 镜像&#xff0c;为方便起见&#xff0c;直接在 root 账户下操作&#xff0c;现实情况最好不要这样做。 基础准备 关…

pycharm——涟漪散点图

from pyecharts import options as opts from pyecharts.charts import EffectScatterc (EffectScatter().add_xaxis( ["高等数学1&#xff0c;2","C语言程序设计","python程序设计","大数据导论","数据结构","大数据…

CentOS 8 上安装 Nginx

Nginx是一款高性能的开源Web服务器和反向代理服务器&#xff0c;以其轻量级和高效能而广受欢迎。在本教程中&#xff0c;我们将学习在 CentOS 8 操作系统上安装和配置 Nginx。 步骤 1&#xff1a;更新系统 在安装任何软件之前&#xff0c;让我们先更新系统的软件包列表和已安…

opencv 31-图像平滑处理-方框滤波cv2.boxFilter()

方框滤波&#xff08;Box Filtering&#xff09;是一种简单的图像平滑处理方法&#xff0c;它主要用于去除图像中的噪声和减少细节&#xff0c;同时保持图像的整体亮度分布。 方框滤波的原理很简单&#xff1a;对于图像中的每个像素&#xff0c;将其周围的一个固定大小的邻域内…

HTTP、HTTPS协议详解

文章目录 HTTP是什么报文结构请求头部响应头部 工作原理用户点击一个URL链接后&#xff0c;浏览器和web服务器会执行什么http的版本持久连接和非持久连接无状态与有状态Cookie和Sessionhttp方法&#xff1a;get和post的区别 状态码 HTTPS是什么ssl如何搞到证书nginx中的部署 加…

Sqli-labs1~65关 通关详解 解题思路+解题步骤+解析

Sqli-labs 01关 (web517) 输入?id1 正常 输入?id1 报错 .0 输入?id1-- 正常判断是字符型注入&#xff0c;闭合方式是这里插一句。limit 100,1是从第100条数据开始&#xff0c;读取1条数据。limit 6是读取前6条数据。 ?id1 order by 3-- 正常判断回显位有三个。?id…

ChatGPT在法律行业的市场潜力

​ChatGPT现在已经成为我们的文字生成辅助工具、搜索引擎助手&#xff0c;许多体验过它的朋友会发现对它越来越依赖&#xff0c;并将其逐渐融入到自己的日常工作、生活。但有一点值得注意&#xff1a;这种人工智能除了技术可行、经济价值可行还要与相关规范即人类普遍的价值观念…

轻松批量文件改名!一键翻译重命名文件夹/文件,省时高效!」

繁忙的数字时代&#xff0c;我们经常需要处理大量的文件和文件夹。而手动逐个更改文件名不仅费时费力&#xff0c;还容易出错。因此&#xff0c;我们为您带来了一款强大的工具——批量文件改名软件&#xff01;现在&#xff0c;您可以一键翻译重命名文件夹和文件&#xff0c;轻…

csdn新星计划vue3+ts+antd赛道——利用inscode搭建vue3(ts)+antd前端模板

文章目录 ⭐前言⭐利用inscode免费开放资源&#x1f496; 在inscode搭建vue3tsant项目&#x1f496; 调整配置&#x1f496; antd 国际化配置&#x1f496; 用户store&#x1f496; 路由权限&#x1f496; 预览 ⭐结束 ⭐前言 大家好&#xff0c;我是yma16&#xff0c;本文分享…

Day10-作业(SpringBootWeb案例)

作业1&#xff1a;完成课上预留给大家自己完成的功能 【部门管理的修改功能】 注意&#xff1a; 部门管理的修改功能&#xff0c;需要开发两个接口&#xff1a; 先开发根据ID查询部门信息的接口&#xff0c;该接口用户查询数据并展示 。(一定一定先做这个功能) 再开发根据ID…