langchain-ChatGLM源码阅读:参数设置

文章目录

    • 上下文关联
    • 对话轮数
    • 向量匹配 top k
    • 控制生成质量的参数
    • 参数设置心得

上下文关联

上下文关联相关参数:

  • 知识相关度阈值score_threshold
  • 内容条数k
  • 是否启用上下文关联chunk_conent
  • 上下文最大长度chunk_size

其主要作用是在所在文档中扩展与当前query相似度较高的知识库的内容,作为相关信息与query按照prompt规则组合后作为输入获得模型的回答。

在这里插入图片描述

  • 获取查询句query嵌入:faiss.py
def similarity_search_with_score(self, query: str, k: int = 4) -> List[Tuple[Document, float]]:"""Return docs most similar to query.Args:query: Text to look up documents similar to.k: Number of Documents to return. Defaults to 4.Returns:List of Documents most similar to the query and score for each"""embedding = self.embedding_function(query)docs = self.similarity_search_with_score_by_vector(embedding, k)return docs
  • 上下文生成:MyFAISS.py
def seperate_list(self, ls: List[int]) -> List[List[int]]:# TODO: 增加是否属于同一文档的判断lists = []ls1 = [ls[0]]for i in range(1, len(ls)):if ls[i - 1] + 1 == ls[i]:ls1.append(ls[i])else:lists.append(ls1)ls1 = [ls[i]]lists.append(ls1)return listsdef similarity_search_with_score_by_vector(self, embedding: List[float], k: int = 4) -> List[Document]:faiss = dependable_faiss_import()# (1,1024)vector = np.array([embedding], dtype=np.float32)# 默认FALSEif self._normalize_L2:faiss.normalize_L2(vector)# shape均为(1, k),这步获取与query有top-k相似度的知识库scores, indices = self.index.search(vector, k)docs = []id_set = set()store_len = len(self.index_to_docstore_id)rearrange_id_list = False# 遍历找到的k个最相似知识库的索引# k是第一次的筛选条件,score是第二次的筛选条件for j, i in enumerate(indices[0]):if i == -1 or 0 < self.score_threshold < scores[0][j]:# This happens when not enough docs are returned.continueif i in self.index_to_docstore_id:_id = self.index_to_docstore_id[i]# 执行接下来的操作else:continue# index→id→contentdoc = self.docstore.search(_id)if (not self.chunk_conent) or ("context_expand" in doc.metadata and not doc.metadata["context_expand"]):# 匹配出的文本如果不需要扩展上下文则执行如下代码if not isinstance(doc, Document):raise ValueError(f"Could not find document for id {_id}, got {doc}")doc.metadata["score"] = int(scores[0][j])docs.append(doc)continue# 其实存的都是indexid_set.add(i)docs_len = len(doc.page_content)# 跟外部变量定义的k重名了,烂# 一个知识库是分句后得到的一句话,i是当前知识库在总知识库中的位置,store_len是总知识库大小# 所以k说的是扩充上下文时最多能跨多少个知识库for k in range(1, max(i, store_len - i)):break_flag = Falseif "context_expand_method" in doc.metadata and doc.metadata["context_expand_method"] == "forward":expand_range = [i + k]elif "context_expand_method" in doc.metadata and doc.metadata["context_expand_method"] == "backward":expand_range = [i - k]else:# i=4922, k=1 → [4923, 4921]expand_range = [i + k, i - k]for l in expand_range:# 确保扩展上下文时不会造成重复if l not in id_set and 0 <= l < len(self.index_to_docstore_id):_id0 = self.index_to_docstore_id[l]doc0 = self.docstore.search(_id0)# 如果当前字数大于250或者是知识库跨了文件,扩充上下文过程终止# 这一句有些问题,有一端跨文件就终止,应该是两端同时跨才终止才对if docs_len + len(doc0.page_content) > self.chunk_size or doc0.metadata["source"] != \doc.metadata["source"]:break_flag = Truebreakelif doc0.metadata["source"] == doc.metadata["source"]:docs_len += len(doc0.page_content)id_set.add(l)rearrange_id_list = Trueif break_flag:break# 如果没有扩展上下文(不需要或是不能)if (not self.chunk_conent) or (not rearrange_id_list):return docsif len(id_set) == 0 and self.score_threshold > 0:return []id_list = sorted(list(id_set))# 连续必然属于同一文档,但不连续也可能在同一文档# 返回二级列表,第一级是连续的index列表,第二级是具体indexid_lists = self.seperate_list(id_list)for id_seq in id_lists:for id in id_seq:if id == id_seq[0]:_id = self.index_to_docstore_id[id]# doc = self.docstore.search(_id)doc = copy.deepcopy(self.docstore.search(_id))else:_id0 = self.index_to_docstore_id[id]doc0 = self.docstore.search(_id0)doc.page_content += " " + doc0.page_contentif not isinstance(doc, Document):raise ValueError(f"Could not find document for id {_id}, got {doc}")# indices为相关文件的索引# 因为可能会将多个连续的id合并,因此需要将同一seq内所有位于top-k的知识库的分数取最小值作为seq对应的分数doc_score = min([scores[0][id] for id in [indices[0].tolist().index(i) for i in id_seq if i in indices[0]]])doc.metadata["score"] = int(doc_score)docs.append(doc)# 注意这里docs没有按相似度排序,可以自行加个sortreturn docs
  • prompt生成:local_doc_qa.py
def get_knowledge_based_answer(self, query, vs_path, chat_history=[], streaming: bool = STREAMING):related_docs_with_score = vector_store.similarity_search_with_score(query, k=self.top_k)torch_gc()if len(related_docs_with_score) > 0:prompt = generate_prompt(related_docs_with_score, query)else:prompt = queryanswer_result_stream_result = self.llm_model_chain({"prompt": prompt, "history": chat_history, "streaming": streaming})def generate_prompt(related_docs: List[str],query: str,prompt_template: str = PROMPT_TEMPLATE, ) -> str:context = "\n".join([doc.page_content for doc in related_docs])prompt = prompt_template.replace("{question}", query).replace("{context}", context)return prompt

对话轮数

在这里插入图片描述
其实就是要存多少历史记录,如果为0的话就是在执行当前对话时不考虑历史问答

  • 模型内部调用时使用,以chatglm为例:chatglm_llm.py
 def _generate_answer(self,inputs: Dict[str, Any],run_manager: Optional[CallbackManagerForChainRun] = None,generate_with_callback: AnswerResultStream = None) -> None:history = inputs[self.history_key]streaming = inputs[self.streaming_key]prompt = inputs[self.prompt_key]print(f"__call:{prompt}")# Create the StoppingCriteriaList with the stopping stringsstopping_criteria_list = transformers.StoppingCriteriaList()# 定义模型stopping_criteria 队列,在每次响应时将 torch.LongTensor, torch.FloatTensor同步到AnswerResultlistenerQueue = AnswerResultQueueSentinelTokenListenerQueue()stopping_criteria_list.append(listenerQueue)if streaming:history += [[]]for inum, (stream_resp, _) in enumerate(self.checkPoint.model.stream_chat(self.checkPoint.tokenizer,prompt,# 为0时history返回[]history=history[-self.history_len:-1] if self.history_len > 0 else [],max_length=self.max_token,temperature=self.temperature,top_p=self.top_p,top_k=self.top_k,stopping_criteria=stopping_criteria_list)):

向量匹配 top k

虽然放在了模型配置那一页,但实际上还是用来控制上下文关联里面的内容条数k的,不知道为什么写了两遍。。。
在这里插入图片描述

控制生成质量的参数

这些参数没有在前端显式地给出,而是写死在了模型定义里

  • 模型定义,以chatglm为例:chatglm_llm.py
class ChatGLMLLMChain(BaseAnswer, Chain, ABC):max_token: int = 10000temperature: float = 0.01# 相关度top_p = 0.4# 候选词数量top_k = 10checkPoint: LoaderCheckPoint = None# history = []history_len: int = 10

参数设置心得

  • score_threshold和k设太小会找不到问题对应的原文件,太大找到一堆不相关的
  • chunk_size设太小不能在原文件里找到问题对应的原文,太大无法有效归纳出答案
  • temperature和top_p默认值下生成的答案基本固定,但也很死板;过大的temperature导致回答的事实不稳定;过大的top_p导致回答的语言风格不稳定;调整top_k没发现结果有什么变化

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/79811.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Spring Boot】(二)Spring Boot 配置文件的探索之旅

文章目录 前言一、配置文件的作用二、配置文件的格式2.1 Spring Boot 配置文件格式2.2 properties 和 yml 的区别 三、properties 配置文件3.1 properties 基本语法3.2 配置文件的读取3.3 properties 优缺点分析 四、yml 配置文件说明4.1 yml 基本语法4.2 yml 使用案例4.3 yml …

Android Ble蓝牙App(三)特性和属性

Ble蓝牙App&#xff08;三&#xff09;特性使用 前言正文一、获取属性列表二、属性适配器三、获取特性名称四、特性适配器五、加载特性六、显示特性和属性七、源码 前言 在上一篇中我们完成了连接和发现服务两个动作&#xff0c;那么再发现服务之后要做什么呢&#xff1f;发现服…

在centos7上使用非编译方式安装ffmpeg

很多在centos7上安装ffmpeg的教程都需要使用编译方式的安装&#xff1b;编译时间较长而且需要配置; 后来搜索到可以通过加载rpm 源的方式实现快速便捷操作 第一种方式&#xff1a; 首先需要安装yum源&#xff1a; yum install epel-release yum install -y https://mirrors.…

GPU版PyTorch对应安装教程

一、正确安装符合自己电脑的对应GPU版本的PyTorch之前需要了解三个基本概念 算力、CUDA driver version、CUDA runtime version ①算力&#xff1a;需要先知道你的显卡&#xff0c;之后根据官网表格进行对应&#xff0c;得到算力 ②CUDA driver version&#xff1a;电脑上显卡…

python编写小程序有界面,python编写小程序的运行

大家好&#xff0c;小编为大家解答python编写小程序怎么看代码的的问题。很多人还不知道python编写小程序的运行&#xff0c;现在让我们一起来看看吧&#xff01; Python第一个简单的小游戏 temp input("请猜一猜姐姐的幸运数字是&#xff1a; ") guess int(temp) …

99%的人做效果图都会忽略的问题!为什么你的效果图没有亚洲面孔?

不知道各位设计师有没有发现一个问题&#xff0c;我们做了不少效果图&#xff0c;也积攒了很多素材&#xff0c;但是出现在我们效果图的人物几乎都是外国人&#xff01; 可能你会说是亚洲人的素材实在太少&#xff0c;但本质是对“人”不够重视&#xff0c;觉得随便“复制粘贴”…

数据结构 | 利用二叉堆实现优先级队列

目录 一、二叉堆的操作 二、二叉堆的实现 2.1 结构属性 2.2 堆的有序性 2.3 堆操作 队列有一个重要的变体&#xff0c;叫作优先级队列。和队列一样&#xff0c;优先级队列从头部移除元素&#xff0c;不过元素的逻辑顺序是由优先级决定的。优先级最高的元素在最前&#xff…

火爆全网,Python自动化测试Allure测试报告生成,最强总结...

目录&#xff1a;导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09; 前言 Allure测试报告框…

JavaWeb(9)——前端综合案例3(悬停显示下拉列表)

一、实例需求 ⌛ 实现类似百度首页的“一个简单的鼠标悬停显示的下拉列表效果”。 二、代码实现 ☕ <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>Title</title><style>.dropdown-cont…

外部链接跳转到vue项目传递参数实现单点登录

1、问题背景描述&#xff1a; 我有一个困扰了很久项目需求&#xff0c;前台门户用的MVC&#xff0c;前台登录之后需要能点击某个按钮就能进入后台vue开发的前端项目&#xff0c;不需要重新登录。这个需求中mvc项目相对于vue项目来说是外部链接&#xff0c;他要跳转到vue项目&a…

9、Kubernetes核心技术 - Volume

目录 一、概述 二、卷的类型 三、emptyDir 四、hostPath 五、NFS 5.1、master服务器上搭建nfs服务器 5.2、各个slave节点上安装nfs客户端 5.3、创建Pod 六、PV和PVC 6.1、PV 6.1.1、PV资源清单文件示例 6.1.2、PV属性说明 6.1.3、PV的状态 6.2、PVC 6.2.1、PVC资…

git开发过程中的使用

1、先创建本地分支&#xff0c;然后修改代码 2、本地提交 push 3、合并为主分支 回到master分支

Bigemap如何添加谷歌地图?

工具 Bigemap gis office地图软件 BIGEMAP GIS Office-全能版 Bigemap APP_卫星地图APP_高清卫星地图APP 打开软件&#xff0c;要提示需要授权和添加地图&#xff0c;然后去点击选择地图这个按钮&#xff0c;列表中有个添加按钮点进去选择添加地图的方式。 第一种方式&#x…

UML—用例图的那些事

目录 背景: 1.用例图的发展史 过程: 1.用例图中的元素和关系 2.应用中的例子 总结&#xff1a; 背景: 1.用例图的发展史 用例图是一种常用的软件工程工具&#xff0c;用于描述系统的功能需求和用户与系统的交互。它在软件开发过程中起到了重要的作用&#xff0c;并且经历了…

【开源项目--稻草】Day06

【开源项目--稻草】Day06 1. 学生提问与解答功能2. 显示create.html2.1 HomeController中代码2.2 复用网页的标签导航条 3. 创建问题发布界面3.1 富文本编辑器 4.多选下列框5.动态加载所有标签和老师6. 发布问题的业务处理 1. 学生提问与解答功能 学生提问: 提问时指定标签和回…

VBA遍历Wrod所有表格每个单元格,单元格未尾两个回车替换

一、遍历 word中遍历所有表格的每个单元格。因为在单元格时会常出错。浪费了不少时间。 Sub a()Dim doc As Document, tb As Table, ce As cellDim rng As Range, p As ParagraphSet doc ActiveDocumentFor Each tb In doc.TablesFor Each ce In tb.Range.Cells 关键处就是这里…

Java中的Unsafe类详解

Java中的Unsafe类详解 1. Unsafe 概念2. Unsafe 构造及获取3. 功能和应用3.1 内存管理3.1.1 普通读写3.1.2 volatile 读写3.1.3 有序读写3.1.4 直接操作内存 3.2 CAS3.3 偏移量3.4 线程调度3.5 类加载3.6 内存屏障3.7 其他操作 4. 潜在风险和挑战5. 最佳实践5.1 使用案例&#…

QtAV for ubuntu16.04

下载ubuntu https://releases.ubuntu.com/16.04/ubuntu-16.04.7-desktop-amd64.iso 下载ffmpeg https://ffmpeg.org/download.html 下载QtAV https://github.com/wang-bin/QtAV/releases 更新 sudo apt update 安装库 sudo apt-get install libglu1-mesa-dev freeglut3-dev…

【算法系列 | 7】深入解析查找算法之—布隆过滤器

序言 心若有阳光&#xff0c;你便会看见这个世界有那么多美好值得期待和向往。 决定开一个算法专栏&#xff0c;希望能帮助大家很好的了解算法。主要深入解析每个算法&#xff0c;从概念到示例。 我们一起努力&#xff0c;成为更好的自己&#xff01; 今天第3讲&#xff0c;讲一…

【数据结构】链表(一)

链表&#xff08;一&#xff09; 文章目录 链表&#xff08;一&#xff09;01 引入02 概念及结构03 单向不带头不循环链表实现3.1 创建节点类型3.2 简易创建一个链表3.3 遍历链表每个节点3.4 获取链表长度3.5 查找是否包含关键字key是否在单链表当中3.6 头插法3.7 尾插法3.8 任…