Python-OpenCV中的图像处理-霍夫变换

Python-OpenCV中的图像处理-霍夫变换

  • 霍夫变换
    • 霍夫直线变换
    • 霍夫圆环变换

霍夫变换

  • 霍夫(Hough)变换在检测各种形状的技术中非常流行,如果要检测的形状可以用数学表达式描述,就可以是使用霍夫变换检测它。即使要检测的形状存在一点破坏或者扭曲也是可以使用。

霍夫直线变换

  1. Hough直线变换,可以检测一张图像中的直线
  2. cv2.HoughLines(image, rho, theta, threshold)
    • return:返回值就是( ρ, θ)。 ρ 的单位是像素, θ 的单位是弧度。
    • image:是一个二值化图像,所以在进行霍夫变换之前要首先进行二值化,或者进行Canny 边缘检测。
    • rho:代表 ρ 的精确度。
    • theta:代表θ 的精确度。
    • threshold:阈值,只有累加其中的值高于阈值时才被认为是一条直线,也可以把它看成能检测到的直线的最短长度(以像素点为单位)。
  3. cv2.HoughLinesP(image: Mat, rho, theta, threshold, lines=…, minLineLength=…, maxLineGap=…)
    • return :返回值就是直线的起点和终点(x1,y1,x2,y2)。
    • rho:代表 ρ 的精确度。
    • theta:代表θ 的精确度。
    • threshold:阈值,只有累加其中的值高于阈值时才被认为是一条直线,也可以把它看成能检测到的直线的最短长度(以像素点为单位)。
    • minLineLength:直线的最短长度。比这个短的线都会被忽略。
    • maxLineGap- 两条线段之间的最大间隔,如果小于此值,这两条直线就被看成是一条直线。
  4. 一条直线可以用数学表达式 y = mx + c 或者 ρ = x cos θ + y sin θ 表示。ρ 是从原点到直线的垂直距离, θ 是直线的垂线与横轴顺时针方向的夹角(如果使用的坐标系不同,方向也可能不同,这里是按 OpenCV 使用的坐标系描述的)。如下图所示:
    在这里插入图片描述
import numpy as np
import cv2
from matplotlib import pyplot as pltimg = cv2.imread('./resource/opencv/image/sudoku.png', cv2.IMREAD_COLOR)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray, 50, 150, apertureSize=3)lines = cv2.HoughLines(edges, 1, np.pi/180, 200)for i in range(len(lines)):
# for rho, thetha in lines[10]:rho = lines[i][0][0]thetha = lines[i][0][1]a = np.cos(thetha)b = np.sin(thetha)x0 = a*rhoy0 = b*rholine_length = 1000 # 线长x1 = int(x0 + line_length*(-b))y1 = int(y0 + line_length*(a))x2 = int(x0 - line_length*(-b))y2 = int(y0 - line_length*(a))cv2.line(img, (x1, y1), (x2, y2), (0, 255, 0), 1)# 因为gray和edges都是单通道的,为了可以和原图拼接合并,需要merge成3通道图像数据
gray = cv2.merge((gray, gray, gray))
edges = cv2.merge((edges,edges,edges))# 图像拼接
res = np.hstack((gray,edges,img))cv2.imshow('res', res)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述
渐进概率式霍夫变换
cv2.HoughLinesP(image: Mat, rho, theta, threshold, lines=…, minLineLength=…, maxLineGap=…)

import numpy as np
import cv2
from matplotlib import pyplot as pltimg = cv2.imread('./resource/opencv/image/sudoku.png', cv2.IMREAD_COLOR)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
canny = cv2.Canny(gray, 50, 150, apertureSize=3)minLineLength = 100
maxLineGap = 10
# HoughLinesP(image: Mat, rho, theta, threshold, lines=..., minLineLength=..., maxLineGap=...) 
lines = cv2.HoughLinesP(canny, 1, np.pi/180, 100, minLineLength, maxLineGap)print(lines.shape)
print(lines[0])for i in range(len(lines)):for x1,y1,x2,y2 in lines[i]:cv2.line(img, (x1, y1), (x2, y2), (0, 255, 0), 1)gray = cv2.merge((gray, gray, gray))
canny = cv2.merge((canny,canny,canny))res = np.hstack((gray, canny, img))
cv2.imshow('res', res)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述
在含有坐标点集合中寻找是否存在直线:
cv2.HoughLinesPointSet(_point, lines_max, threshold, min_rho, max_rho, rho_step, min_theta, max_theta, theta_step, _lines=…)

  • _point:输入点的集合,必须是平面内的2D坐标,数据类型必须是CV_32FC2或CV_32SC2。
  • lines_max:检测直线的最大数目。
  • threshold:累加器的阈值,即参数空间中离散化后每个方格被通过的累计次数大于阈值时则被识别为直线,否则不被识别为直线。
  • min_rho:检测直线长度的最小距离,以像素为单位。
  • max_rho:检测直线长度的最大距离,以像素为单位。
  • rho_step::以像素为单位的距离分辨率,即距离 离散化时的单位长度。
  • min_theta:检测直线的最小角度值,以弧度为单位。
  • max_theta:检测直线的最大角度值,以弧度为单位。
  • theta_step:以弧度为单位的角度分辨率,即夹角 离散化时的单位角度。
  • _lines:在输入点集合中可能存在的直线,每一条直线都具有三个参数,分别是权重、直线距离坐标原点的距离 和坐标原点到直线的垂线与x轴的夹角 。

霍夫圆环变换

  1. 圆形的数学表达式为 (x − xcenter)2+(y − ycenter)2 = r2,其中( xcenter,ycenter)为圆心的坐标, r 为圆的直径。从这个等式中我们可以看出:一个圆环需要 3个参数来确定。所以进行圆环霍夫变换的累加器必须是 3 维的,这样的话效率就会很低。所以 OpenCV 用来一个比较巧妙的办法,霍夫梯度法,它可以使用边界的梯度信息。
  2. cv2.HoughCircles(image, method, dp, minDist, circles=…, param1=…, param2=…, minRadius=…, maxRadius=…)
    • return:存储检测到的圆的输出矢量。
    • image:输入图像,数据类型一般用Mat型即可,需要是8位单通道灰度图像
    • method:使用的检测方法,cv2.HOUGH_GRADIENT,cv2.HOUGH_GRADIENT_ALT。
    • dp:double类型的dp,用来检测圆心的累加器图像的分辨率于输入图像之比的倒数,且此参数允许创建一个比输入图像分辨率低的累加器。上述文字不好理解的话,来看例子吧。例如,如果dp= 1时,累加器和输入图像具有相同的分辨率。如果dp=2,累加器便有输入图像一半那么大的宽度和高度。
    • minDist:为霍夫变换检测到的圆的圆心之间的最小距离。
    • circles:可以忽略,存储检测到的圆的输出矢量。
    • param1:它是第三个参数method设置的检测方法的对应的参数。它表示传递给canny边缘检测算子的高阈值,而低阈值为高阈值的一半。
    • param2:也是第三个参数method设置的检测方法的对应的参数,它表示在检测阶段圆心的累加器阈值。它越小的话,就可以检测到更多根本不存在的圆,而它越大的话,能通过检测的圆就更加接近完美的圆形了。
    • minRadius:表示圆半径的最小值。
    • maxRadius:表示圆半径的最大值。
import numpy as np
import cv2img = cv2.imread('./resource/opencv/image/logo/opencv-logo2.png', cv2.IMREAD_GRAYSCALE)
img = cv2.medianBlur(img, 5)
cimg = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)circles = cv2.HoughCircles(img, cv2.HOUGH_GRADIENT, 1, 20, param1=50, param2=30, minRadius=30, maxRadius=0)print(circles)
circles = np.uint16(circles)
print(circles)for i in circles[0, :]:cv2.circle(cimg, (i[0], i[1]), i[2], (0, 255, 0), 2)cv2.circle(cimg, (i[0], i[1]), 2, (0, 0, 255), 3)cv2.imshow('detected circles', cimg)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/87739.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ThinkPHP8命名规范-ThinkPHP8知识详解

本文主要讲解thinkphp8的命名规范,主要包括:遵循PHP自身的PSR-2命名规范和PSR-4自动加载规范、目录和文件命名规范、函数和类、属性命名规范、常量和配置命名规范、数据表和字段命名规范、不能使用PHP保留字。 在使用thinkphp8开发项目之前,…

Docker安装ElasticSearch/ES 7.4.0

目录 前言安装ElasticSearch/ES安装步骤1:准备1. 安装docker2. 搜索可以使用的镜像。3. 也可从docker hub上搜索镜像。4. 选择合适的redis镜像。 安装步骤2:拉取ElasticSearch镜像1 拉取镜像2 查看已拉取的镜像 安装步骤3:创建容器创建容器方…

【软件测试】Linux环境Ant调用Jmeter脚本并且生成测试报告(详细)

目录:导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜) 前言 准备工作 需要在…

Linux驱动-基于Buildroot构建系统镜像后实现基于QT项目开发之环境配置

Linux驱动-基于Buildroot构建系统镜像后实现基于QT项目开发之环境配置 需求BuildRootUboot的仓库地址和commit idKernel 的仓库地址和commit id BuildRoot已编译库在Windows上的Create上创建项目编译QT项目 需求 基于Build root编译整个镜像后,如何开发自己的基于Q…

windows环境下打印机无法打印的解决方案

大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…

【资讯速递】AI与人类思维的融合;OpenAI在中国申请注册“GPT-5”商标;移动大模型主要面向to B 智能算力是未来方向

2023年8月11日 星期五 癸卯年六月廿五 第000001号 欢迎来到爱书不爱输的程序猿的博客, 本博客致力于知识分享,与更多的人进行学习交流 本文收录于IT资讯速递专栏,本专栏主要用于发布各种IT资讯,为大家可以省时省力的就能阅读和了解到行业的一些新资讯 资…

【BASH】回顾与知识点梳理(十五)

【BASH】回顾与知识点梳理 十五 十五. 指令与文件的搜寻15.1 脚本文件名的搜寻which (寻找『执行档』) 15.2 文件档名的搜寻whereis (由一些特定的目录中寻找文件文件名)locate / updatedbfind与时间有关的选项与使用者或组名有关的参数与文件权限及名称有关的参数额外可进行的…

【图像分类】 理论篇(1) 图像分类的测评指标

对于分类模型的性能评估通常采用混淆矩阵的方式和计算准确率、正确率、召回率和 F1 分数。本文详细介绍图像分类的测评指标 在二分类问题中,样本有正负两个类别,模型对样本的预测结果存在四种组合:真阳性,即预测为正&#x…

Axure RP9小白安装教程

Axure RP 9是一款流行的快速原型设计软件,用于创建交互式原型。它提供了丰富的工具和功能,方便用户设计和演示WEB界面、APP界面以及软件界面等产品的交互效果。Axure RP 9可以帮助产品经理、设计师和开发团队更好地协作,快速验证和改进产品的…

ROS实现自定义信息以及使用

常见的消息包 消息包定义一般如下👇 (1)创建包和依赖项 (2)在新建的qq_msgs的包新建msgs的文件夹,在该文件夹里面新建Carry.msg类型的文件。 其实,Carry.msg就是你自己定义的消息类型&am…

JVM之内存模型

1. Java内存模型 很多人将Java 内存结构与java 内存模型傻傻分不清,java 内存模型是 Java Memory Model(JMM)的意思。 简单的说,JMM 定义了一套在多线程读写共享数据时(成员变量、数组)时,对数据…

2023 互联网大厂薪资大比拼

最近整理了33家互联网大厂的薪资情况。可以看出来,大部分互联网大厂薪资还是很不错的,腾讯、阿里、美团、百度等大厂平均月薪超过30k,其他互联网大厂平均月薪也都在25k以上。01020304050607080910111213141516171819202122232425262728293031…

无涯教程-Perl - glob函数

描述 此函数返回与EXPR匹配的文件的列表,这些文件将由标准Bourne shell进行扩展。如果EXPR未指定路径,请使用当前目录。如果省略EXPR,则使用$_的值。 从Perl 5.6开始,扩展是在内部完成的,而不是使用外部脚本。扩展遵循csh(以及任何派生形式,包括tcsh和bash)的扩展方式,其翻译…

MFC 多语言对话框

可以直接看一下bilibili的这个本人录制的视频:MFC资源多语言_哔哩哔哩_bilibili 这里所说的多语言也是国际化 新建一个MFC项目,我这边是中文简体,如果想加入其他语言,方法如下: 修改完这些之后,需要在代码…

1990-2021年上市公司绿色专利和绿色使用新型申请获得分类号数据

1990-2021年上市公司绿色专利申请获得分类号数据 1、时间:1990-2021年 2、来源:国家知识产权局 3、指标: 绿色专利申请数量(分A类 B类C类D类E类F类G类H类)、绿色专利获得数量(分A类 B类C类D类E类F类G类…

198、仿真-基于51单片机函数波形发生器调幅度频率波形Proteus仿真(程序+Proteus仿真+原理图+流程图+元器件清单+配套资料等)

毕设帮助、开题指导、技术解答(有偿)见文未 目录 一、硬件设计 二、设计功能 三、Proteus仿真图 四、原理图 五、程序源码 资料包括: 需要完整的资料可以点击下面的名片加下我,找我要资源压缩包的百度网盘下载地址及提取码。 方案选择 单片机的选…

ubuntu20.04磁盘满了 /dev/mapper/ubuntu--vg-ubuntu--lv 占用 100%

问题 执行 mysql 大文件导入任务,最后快完成了,查看结果发现错了!悲催!都执行了 两天了 The table ‘XXXXXX’ is full ? 磁盘满了? 刚好之前另一个 centos 服务器上也出现过磁盘满了,因此&a…

Spring Cloud 面试突击2

Spring Cloud 面试突击2 高并发:是一种系统运行过程中遇到的短时间大量的请求操作 响应时间: 吞吐量: QPS:数据库为维度 TPS 并发用户数 并发的维度:很多的 并发是不是达到的当前系统的瓶颈 缓存 &#xff08…

matlab解常微分方程常用数值解法2:龙格库塔方法

总结和记录一下matlab求解常微分方程常用的数值解法,本文将介绍龙格库塔方法(Runge-Kutta Method)。 龙格库塔迭代的基本思想是: x k 1 x k a k 1 b k 2 x_{k1}x_{k}a k_{1}b k_{2} xk1​xk​ak1​bk2​ k 1 h f ( x k , t …

6.2.0在线编辑:GrapeCity Documents for Word (GcWord) Crack

GrapeCity Word 文档 (GcWord) 支持 Office Math 函数以及转换为 MathML GcWord 现在支持在 Word 文档中创建和编辑 Office Math 内容。GcWord 中的 OMath 支持包括完整的 API,可处理科学、数学和通用 Word 文档中广泛使用的数学符号、公式和方程。以下是通过 OMa…