【简单认识zookeeper+kafka分布式消息队列集群的部署】

文章目录

  • 一、zookeeper
    • 1、定义
    • 2、工作机制
    • 3、Zookeeper 特点
    • 4、Zookeeper 数据结构
    • 5、Zookeeper 应用场景
    • 6、Zookeeper 选举机制
      • (1)第一次启动选举机制
      • (2)非第一次启动选举机制
    • 7、部署zookeeper群集
  • 二、消息队列概述
    • 1、为什么需要消息队列(MQ)
    • 2、使用消息队列的好处
    • 3、消息队列的两种模式
  • 三、kafka概述
    • 1、Kafka 定义
    • 2、Kafka 简介
    • 3、Kafka 的特性
    • 4、Kafka 系统架构
    • 5、kafka的部署
    • 6、kafka命令的使用


一、zookeeper

1、定义

Zookeeper是一个开源的分布式的,为分布式框架提供协调服务的Apache项目。

2、工作机制

Zookeeper从设计模式角度来理解:是一个基于观察者模式设计的分布式服务管理框架,它负责存储和管理大家都关心的数据,然后接受观察者的注册,一旦这些数据的状态发生变化,Zookeeper就将负责通知已经在Zookeeper上注册的那些观察者做出相应的反应。也就是说 Zookeeper = 文件系统 + 通知机制。
在这里插入图片描述

3、Zookeeper 特点

(1)一个领导者(Leader),多个跟随者(Follower)组成的集群。

(2)Zookeeper集群中只要有半数以上节点存活,Zookeeper集群就能正常服务。所以Zookeeper适合安装奇数(>=3)台服务器。

(3)全局数据一致:每个Server保存一份相同的数据副本,Client无论连接到哪个Server,数据都是一致的。
(4)更新请求顺序执行,来自同一个Client的更新请求按其发送顺序依次执行,即先进先出

(5)数据更新原子性,一次数据更新要么成功,要么失败。

(6)实时性,在一定时间范围内,Client能读到最新数据。

4、Zookeeper 数据结构

ZooKeeper数据模型的结构与Linux文件系统很类似,整体上可以看作是一棵树,每个节点称做一个ZNode。每一个ZNode默认能够存储1MB的数据,每个ZNode都可以通过其路径唯一标识.
在这里插入图片描述

5、Zookeeper 应用场景

提供的服务包括:统一命名服务、统一配置管理、统一集群管理、服务器节点动态上下线、软负载均衡等。

(1)统一命名服务
在分布式环境下,经常需要对应用/服务进行统一命名,便于识别。例如:IP不容易记住,而域名容易记住。

(2)统一配置管理
分布式环境下,配置文件同步非常常见。一般要求一个集群中,所有节点的配置信息是一致的,比如Kafka集群。对配置文件修改后,希望能够快速同步到各个节点上。
配置管理可交由ZooKeeper实现。可将配置信息写入ZooKeeper上的一个Znode。各个客户端服务器监听这个Znode。一旦 Znode中的数据被修改,ZooKeeper将通知各个客户端服务器。

(3)统一集群管理
分布式环境中,实时掌握每个节点的状态是必要的。可根据节点实时状态做出一些调整。
ZooKeeper可以实现实时监控节点状态变化。可将节点信息写入ZooKeeper上的一个ZNode。监听这个ZNode可获取它的实时状态变化。

(4)服务器动态上下线
客户端能实时洞察到服务器上下线的变化。

(5)软负载均衡
在Zookeeper中记录每台服务器的访问数,让访问数最少的服务器去处理最新的客户端请求。(类似于调度算法中的最小连接)

6、Zookeeper 选举机制

SID:服务器ID。用来唯一标识一台ZooKeeper集群中的机器,每台机器不能重复,和myid一致。
ZXID:事务ID。ZXID是一个事务ID,用来标识一次服务器状态的变更。在某一时刻,集群中的每台机器的ZXID值不一定完全一致,这和ZooKeeper服务器对于客户端“更新请求”的处理逻辑速度有关。
Epoch:每个Leader任期的代号。没有Leader时同一轮投票过程中的逻辑时钟值是相同的。每投完一次票这个数据就会增加

(1)第一次启动选举机制

服务器1启动,发起一次选举。服务器1投自己一票。此时服务器1票数一票,不够半数以上(3票),选举无法完成,服务器1状态保持为LOOKING;

服务器2启动,再发起一次选举。服务器1和2分别投自己一票并交换选票信息:此时服务器1发现服务器2的myid比自己目前投票推举的(服务器1)大,更改选票为推举服务器2。此时服务器1票数0票,服务器2票数2票,没有半数以上结果,选举无法完成,服务器1,2状态保持LOOKING。

服务器3启动,发起一次选举。此时服务器1和2都会更改选票为服务器3。此次投票结果:服务器1为0票,服务器2为0票,服务器3为3票。此时服务器3的票数已经超过半数,服务器3当选Leader。服务器1,2更改状态为FOLLOWING,服务器3更改状态为LEADING;

服务器4启动,发起一次选举。此时服务器1,2,3已经不是LOOKING状态,不会更改选票信息。交换选票信息结果:服务器3为3票,服务器4为1票。此时服务器4服从多数,更改选票信息为服务器3,并更改状态为FOLLOWING;

服务器5启动,同4一样做FOLLOWING。

(2)非第一次启动选举机制

(1)当ZooKeeper 集群中的一台服务器出现以下两种情况之一时,就会开始进入Leader选举:

服务器初始化启动。
服务器运行期间无法和Leader保持连接。
(2)当一台机器进入Leader选举流程时,当前集群也可能会处于以下两种状态:

集群中本来就已经存在一个Leader:对于已经存在Leader的情况,机器试图去选举Leader时,会被告知当前服务器的Leader信息,对于该机器来说,仅仅需要和 Leader机器建立连接,并进行状态同步即可。
集群中确实不存在Leader。
假设ZooKeeper由5台服务器组成,SID分别为1、2、3、4、5,ZXID分别为8、8、8、7、7,并且此时SID为3的服务器是Leader。某一时刻,3和5服务器出现故障,因此开始进行Leader选举。
选举Leader规则:
1.EPOCH大的直接胜出
2.EPOCH相同,事务id大的胜出
3.事务id相同,服务器id大的胜出

7、部署zookeeper群集

准备 3 台服务器做 Zookeeper 集群
192.168.116.20
192.168.116.30
192.168.116.40

三台安装jdk环境

yum install -y java-1.8.0-openjdk java-1.8.0-openjdk-devel

在这里插入图片描述
下载安装包,官方下载地址:​​​​​​​https://archive.apache.org/dist/zookeeper/

将下载好的安装包放在/opt目录,解压到/usr/local/zookeeper/

cd /opt
tar zxvf apache-zookeeper-3.5.7-bin.tar.gz
mv apache-zookeeper-3.5.7-bin /usr/local/zookeeper/

修改配置文件

cd /usr/local/zookeeper/conf/
cp zoo_sample.cfg zoo.cfgvim zoo.cfgtickTime=2000      #通信心跳时间,Zookeeper服务器与客户端心跳时间,单位毫秒
initLimit=10       #Leader和Follower初始连接时能容忍的最多心跳数(tickTime的数量),这里表示为10*2s
syncLimit=5        #Leader和Follower之间同步通信的超时时间,这里表示如果超过5*2s,Leader认为Follwer死掉,并从服务器列表中删除Follwer
dataDir=/usr/local/zookeeper/data      #修改,指定保存Zookeeper中的数据的目录,目录需要单独创建
dataLogDir=/usr/local/zookeeper/logs   #添加,指定存放日志的目录,目录需要单独创建
clientPort=2181    #客户端连接端口#添加集群信息
server.1=192.168.116.10:3188:3288
server.2=192.168.116.20:3188:3288
server.3=192.168.116.30:3188:3288

在这里插入图片描述
集群信息字段解释

server.A=B:C:D
A是一个数字,表示这个是第几号服务器。集群模式下需要在zoo.cfg中dataDir指定的目录下创建一个文件myid,这个文件里面有一个数据就是A的值,Zookeeper启动时读取此文件,拿到里面的数据与zoo.cfg里面的配置信息比较从而判断到底是哪个server。
B是这个服务器的地址。
C是这个服务器Follower与集群中的Leader服务器交换信息的端口。
D是万一集群中的Leader服务器挂了,需要一个端口来重新进行选举,选出一个新的Leader,而这个端口就是用来执行选举时服务器相互通信的端口。

将配置好的文件传到另外两台机器

scp /usr/local/zookeeper/conf/zoo.cfg 192.168.116.20:/usr/local/zookeeper/conf/
scp /usr/local/zookeeper/conf/zoo.cfg 192.168.116.30:/usr/local/zookeeper/conf/

在每个节点上创建数据目录和日志目录

mkdir /usr/local/zookeeper/data
mkdir /usr/local/zookeeper/logs

在每个节点的dataDir指定的目录下创建一个 myid 的文件

echo 1 > /usr/local/zookeeper/data/myid
echo 2 > /usr/local/zookeeper/data/myid
echo 3 > /usr/local/zookeeper/data/myid

开启zookeeper
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

二、消息队列概述

1、为什么需要消息队列(MQ)

主要原因是由于在高并发环境下,同步请求来不及处理,请求往往会发生阻塞。比如大量的请求并发访问数据库,导致行锁表锁,最后请求线程会堆积过多,从而触发 too many connection 错误,引发雪崩效应。

我们使用消息队列,通过异步处理请求,从而缓解系统的压力。消息队列常应用于异步处理,流量削峰,应用解耦,消息通讯等场景。

当前比较常见的 MQ 中间件有 ActiveMQ、RabbitMQ、RocketMQ、Kafka 等。

2、使用消息队列的好处

(1)解耦
允许你独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束。

(2)可恢复性
系统的一部分组件失效时,不会影响到整个系统。消息队列降低了进程间的耦合度,所以即使一个处理消息的进程挂掉,加入队列中的消息仍然可以在系统恢复后被处理。

(3)缓冲
有助于控制和优化数据流经过系统的速度,解决生产消息和消费消息的处理速度不一致的情况。

(4)灵活性和峰值处理能力
在访问量剧增的情况下,应用仍然需要继续发挥作用,但是这样的突发流量并不常见。如果为以能处理这类峰值访问为标准来投入资源随时待命无疑是巨大的浪费。

使用消息队列能够使关键组件顶住突发的访问压力(例如双十一),而不会因为突发的超负荷的请求而完全崩溃。

(5)异步通信
很多时候,用户不想也不需要立即处理消息。消息队列提供了异步处理机制,允许用户把一个消息放入队列,但并不立即处理它。想向队列中放入多少消息就放多少,然后在需要的时候再去处理它们。

3、消息队列的两种模式

(1)点对点模式(一对一,消费者主动拉取数据,消息收到后消息清除)
消息生产者生产消息发送到消息队列中,然后消息消费者从消息队列中取出并且消费消息。消息被消费以后,消息队列中不再有存储,所以消息消费者不可能消费到已经被消费的消息。消息队列支持存在多个消费者,但是对一个消息而言,只会有一个消费者可以消费。
(2)发布/订阅模式(一对多,又叫观察者模式,消费者消费数据之后不会清除消息)
消息生产者(发布)将消息发布到 topic 中,同时有多个消息消费者(订阅)消费该消息。和点对点方式不同,发布到 topic 的消息会被所有订阅者消费。

发布/订阅模式是定义对象间一种一对多的依赖关系,使得每当一个对象(目标对象)的状态发生改变,则所有依赖于它的对象(观察者对象)都会得到通知并自动更新。

三、kafka概述

1、Kafka 定义

Kafka 是一个分布式的基于发布/订阅模式的消息队列(MQ,Message Queue),主要应用于大数据实时处理领域。

2、Kafka 简介

Kafka 是最初由 Linkedin 公司开发,是一个分布式、支持分区的(partition)、多副本的(replica),基于 Zookeeper 协调的分布式消息中间件系统,它的最大的特性就是可以实时的处理大量数据以满足各种需求场景,比如基于 hadoop 的批处理系统、低延迟的实时系统\Spark/Flink 流式处理引擎,nginx 访问日志,消息服务等等,用 scala 语言编写,Linkedin 于 2010 年贡献给了 Apache 基金会并成为顶级开源项目。

3、Kafka 的特性

(1)高吞吐量、低延迟
Kafka 每秒可以处理几十万条消息,它的延迟最低只有几毫秒。每个 topic 可以分多个 Partition,Consumer Group 对 Partition 进行消费操作,提高负载均衡能力和消费能力。

(2)可扩展性
kafka 集群支持热扩展。

(3)持久性、可靠性
消息被持久化到本地磁盘,并且支持数据备份防止数据丢失。

(4)容错性
允许集群中节点失败(多副本情况下,若副本数量为 n,则允许 n-1 个节点失败)。

(5)高并发
支持数千个客户端同时读写。

4、Kafka 系统架构

(1)Broker
一台 kafka 服务器就是一个 broker。一个集群由多个 broker 组成。一个 broker 可以容纳多个 topic。

(2)Topic
可以理解为一个队列,生产者和消费者面向的都是一个 topic。类似于数据库的表名或者 ES 的 index 。物理上不同 topic 的消息分开存储。

(3)Partition
为了实现扩展性,一个非常大的 topic 可以分布到多个 broker(即服务器)上,一个 topic 可以分割为一个或多个 partition,每个 partition 是一个有序的队列。Kafka 只保证 partition 内的记录是有序的,而不保证 topic 中不同 partition 的顺序。

每个 topic 至少有一个 partition,当生产者产生数据的时候,会根据分配策略选择分区,然后将消息追加到指定的分区的队列末尾。

Partation 数据路由规则

指定了 patition,则直接使用;
未指定 patition 但指定 key(相当于消息中某个属性),通过对 key 的 value 进行 hash 取模,选出一个 patition;
patition 和 key 都未指定,使用轮询选出一个 patition。
每条消息都会有一个自增的编号,用于标识消息的偏移量,标识顺序从 0 开始。

每个 partition 中的数据使用多个 segment 文件存储。

如果 topic 有多个 partition,消费数据时就不能保证数据的顺序。严格保证消息的消费顺序的场景下(例如商品秒杀、 抢红包),需要将 partition 数目设为 1。

broker 存储 topic 的数据。如果某 topic 有 N 个 partition,集群有 N 个 broker,那么每个 broker 存储该 topic 的一个 partition。
如果某 topic 有 N 个 partition,集群有 (N+M) 个 broker,那么其中有 N 个 broker 存储 topic 的一个 partition, 剩下的 M 个 broker 不存储该 topic 的 partition 数据。
如果某 topic 有 N 个 partition,集群中 broker 数目少于 N 个,那么一个 broker 存储该 topic 的一个或多个 partition。在实际生产环境中,尽量避免这种情况的发生,这种情况容易导致 Kafka 集群数据不均衡。

分区的原因

方便在集群中扩展,每个Partition可以通过调整以适应它所在的机器,而一个topic又可以有多个Partition组成,因此整个集群就可以适应任意大小的数据了;
可以提高并发,因为可以以Partition为单位读写了。

(4)Replica
副本,为保证集群中的某个节点发生故障时,该节点上的 partition 数据不丢失,且 kafka 仍然能够继续工作,kafka 提供了副本机制,一个 topic 的每个分区都有若干个副本,一个 leader 和若干个 follower。

(5)Leader
每个 partition 有多个副本,其中有且仅有一个作为 Leader,Leader 是当前负责数据的读写的 partition。

(6)Follower
Follower 跟随 Leader,所有写请求都通过 Leader 路由,数据变更会广播给所有 Follower,Follower 与 Leader 保持数据同步。Follower 只负责备份,不负责数据的读写。

如果 Leader 故障,则从 Follower 中选举出一个新的 Leader。

当 Follower 挂掉、卡住或者同步太慢,Leader 会把这个 Follower 从 ISR(Leader 维护的一个和 Leader 保持同步的 Follower 集合) 列表中删除,重新创建一个 Follower。

(7)Producer
生产者即数据的发布者,该角色将消息 push 发布到 Kafka 的 topic 中。broker 接收到生产者发送的消息后,broker 将该消息追加到当前用于追加数据的 segment 文件中。

生产者发送的消息,存储到一个 partition 中,生产者也可以指定数据存储的 partition。

(8)Consumer
消费者可以从 broker 中 pull 拉取数据。消费者可以消费多个 topic 中的数据。

(9)Consumer Group(CG)
消费者组,由多个 consumer 组成。所有的消费者都属于某个消费者组,即消费者组是逻辑上的一个订阅者。可为每个消费者指定组名,若不指定组名则属于默认的组。

将多个消费者集中到一起去处理某一个 Topic 的数据,可以更快的提高数据的消费能力。

消费者组内每个消费者负责消费不同分区的数据,一个分区只能由一个组内消费者消费,防止数据被重复读取。消费者组之间互不影响。

(10)offset 偏移量
可以唯一的标识一条消息。偏移量决定读取数据的位置,不会有线程安全的问题,消费者通过偏移量来决定下次读取的消息(即消费位置)。

消息被消费之后,并不被马上删除,这样多个业务就可以重复使用 Kafka 的消息。
某一个业务也可以通过修改偏移量达到重新读取消息的目的,偏移量由用户控制。
消息最终还是会被删除的,默认生命周期为 1 周(7*24小时)。

(11)Zookeeper
Kafka 通过 Zookeeper 来存储集群的 meta 信息。

由于 consumer 在消费过程中可能会出现断电宕机等故障,consumer 恢复后,需要从故障前的位置的继续消费,所以 consumer 需要实时记录自己消费到了哪个 offset,以便故障恢复后继续消费。

Kafka 0.9 版本之前,consumer 默认将 offset 保存在 Zookeeper 中;从 0.9 版本开始,consumer 默认将 offset 保存在 Kafka 一个内置的 topic 中,该 topic 为 __consumer_offsets。

也就是说,zookeeper的作用就是,生产者push数据到kafka集群,就必须要找到kafka集群的节点在哪里,这些都是通过zookeeper去寻找的。消费者消费哪一条数据,也需要zookeeper的支持,从zookeeper获得offset,offset记录上一次消费的数据消费到哪里,这样就可以接着下一条数据进行消费。

5、kafka的部署

下载安装包,官方下载地址:http://kafka.apache.org/downloads.html
在这里插入图片描述
解压到/usr/local/kafka

tar xf kafka_2.13-2.7.1.tgz
mv kafka_2.13-2.7.1 /usr/local/kafka/

修改服务配置文件server.properties
在这里插入图片描述

vim server.properties
broker.id=0    #21行,broker的全局唯一编号,每个broker不能重复,因此要在其他机器上配置 id=1和2
listeners=PLAINTEXT://192.168.116.10:9092    ●31行,指定监听的IP和端口,如果修改每个broker的IP需区分开来,也可保持默认配置不用修改
num.network.threads=3    #42行,broker 处理网络请求的线程数量,一般情况下不需要去修改
num.io.threads=8         #45行,用来处理磁盘IO的线程数量,数值应该大于硬盘数
socket.send.buffer.bytes=102400       #48行,发送套接字的缓冲区大小
socket.receive.buffer.bytes=102400    #51行,接收套接字的缓冲区大小
socket.request.max.bytes=104857600    #54行,请求套接字的缓冲区大小
log.dirs=/usr/local/kafka/logs        #60行,kafka运行日志存放的路径,也是数据存放的路径
num.partitions=1    #65行,topic在当前broker上的默认分区个数,会被topic创建时的指定参数覆盖
num.recovery.threads.per.data.dir=1    #69行,用来恢复和清理data下数据的线程数量
log.retention.hours=168    #103行,segment文件(数据文件)保留的最长时间,单位为小时,默认为7天,超时将被删除
log.segment.bytes=1073741824    #110行,一个segment文件最大的大小,默认为 1G,超出将新建一个新的segment文件
zookeeper.connect=192.168.116.10:2181,192.168.116.20:2181,192.168.116.30:2181    #123行,配置连接Zookeeper集群地址

添加环境变量

//修改环境变量
vim /etc/profile
export KAFKA_HOME=/usr/local/kafka
export PATH=$PATH:$KAFKA_HOME/bin

添加kafka到系统服务

vim /etc/init.d/kafka
#!/bin/bash
#chkconfig:2345 22 88
#description:Kafka Service Control Script
KAFKA_HOME='/usr/local/kafka'
case $1 in
start)echo "---------- Kafka 启动 ------------"${KAFKA_HOME}/bin/kafka-server-start.sh -daemon ${KAFKA_HOME}/config/server.properties
;;
stop)echo "---------- Kafka 停止 ------------"${KAFKA_HOME}/bin/kafka-server-stop.sh
;;
restart)$0 stop$0 start
;;
status)echo "---------- Kafka 状态 ------------"count=$(ps -ef | grep kafka | egrep -cv "grep|$$")if [ "$count" -eq 0 ];thenecho "kafka is not running"elseecho "kafka is running"fi
;;
*)echo "Usage: $0 {start|stop|restart|status}"
esac#设置开机自启
chmod +x /etc/init.d/kafka
chkconfig --add kafka#分别启动 Kafka
service kafka start

6、kafka命令的使用

(1)创建topic

使用kafka-topics.sh--create:执行创建,topic端口为2181--zookeeper:定义 zookeeper 集群服务器地址,如果有多个 IP 地址使用逗号分割,一般使用一个 IP 即可--replication-factor:定义分区副本数,1 代表单副本,建议为 2 --partitions:定义分区数 --topic:定义 topic 名称

在这里插入图片描述
(2) 列出所有topic

 --list:列出当前所有topic

在这里插入图片描述
(3)查看topic信息

   --describe:查看topic的信息--topic:指定topic名,不指定显示所有

在这里插入图片描述
(4) 发布消息

使用 kafka-console-producer.sh--broker-list:指定代理节点,发布端口为9092

在这里插入图片描述
(5)消费消息

使用 kafka-console-consumer.sh--bootstrap-server:指定消费服务器地址,消费端口也是9092--from-beginning:会把主题中以往所有的数据都读取出来

在这里插入图片描述
(6)修改指定topic分区数

使用kafka-topics.sh--alter:执行修改

在这里插入图片描述
(7)删除指定topic

--delete:执行删除

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/88924.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Hands on RL 之 Proximal Policy Optimization (PPO)

Hands on RL 之 Proximal Policy Optimization (PPO) 文章目录 Hands on RL 之 Proximal Policy Optimization (PPO)1. 回顾Policy Gradient和TRPO2. PPO (Clip)3. PPO(Penalty)4. PPO中Advantage Function的计算5.实现 PPO-ClipReference 1. 回顾Policy Gradient和TRPO ​ 首…

ubuntu python虚拟环境venv搭配systemd服务实战(禁用缓存下载--no-cache-dir)

文章目录 参考文章目录结构步骤安装venv查看python版本创建虚拟环境激活虚拟环境运行我们程序看缺少哪些依赖库,依次安装它们(禁用缓存下载--no-cache-dir)接下来我们配置python程序启动脚本,脚本中启动python程序前需先激活虚拟环…

【C++】开源:gflags命令行参数解析库配置使用

😏★,:.☆( ̄▽ ̄)/$:.★ 😏 这篇文章主要介绍gflags命令行参数解析库配置使用。 无专精则不能成,无涉猎则不能通。——梁启超 欢迎来到我的博客,一起学习,共同进步。 喜欢的朋友可以关注一下&…

【数字图像处理】数字图像处理中的直方图相关操作

文章目录 前言一、直方图为什么可以进行图像处理?二、直方图处理怎么实现?直方图均衡化直方图匹配-规定化局部直方图处理直方图统计量增强图像 三、OpenCv提供的直方图基础操作直方图均衡化OpenCv中直方图的表示从数据创建直方图:cv::calcHis…

【云原生】Docker 详解(一):从虚拟机到容器

Docker 详解(一):从虚拟机到容器 1.虚拟化 要解释清楚 Docker,首先要解释清楚 容器(Container)的概念。要解释容器的话,就需要从操作系统说起。操作系统太底层,细说的话一两本书都说…

Linux学习之awk函数

awk里边的函数分为内置函数和自定义函数。 内置函数有下边的几种: 算术函数(arithmetic) 字符串函数(string) 输入/输出函数和通用函数(input/output, and general) 自定义函数格式如下&#xf…

Oracle 使用 CONNECT_BY_ROOT 解锁层次结构洞察:在 SQL 中导航数据关系

CONNECT_BY_ROOT 是一个在 Oracle 数据库中使用的特殊函数,它通常用于在层次查询中获取根节点的值。在使用 CONNECT BY 子句进行层次查询时,通过 CONNECT_BY_ROOT 函数,你可以在每一行中获取根节点的值,而不仅仅是当前行的值。 假…

算法竞赛备赛之搜索与图论训练提升,暑期集训营培训

目录 1.DFS和BFS 1.1.DFS深度优先搜索 1.2.BFS广度优先搜索 2.树与图的遍历:拓扑排序 3.最短路 3.1.迪杰斯特拉算法 3.2.贝尔曼算法 3.3.SPFA算法 3.4.多源汇最短路Floy算法 4.最小生成树 4.1.普利姆算法 4.2.克鲁斯卡尔算法 5.二分图:染色法…

浅析kubernetes部署:javashop部署概览

javashop部署概览 节点规划 首先我们对节点进行规划,方便起见,我们进行如下简单的规划: 这里请根据您的实际情况进行合理的资源安排,或和我们售后工程师讨论形成方案。 域名规划 我们以test.com为主域名规划我们的系统域名如下&…

Jpa与Druid线程池及Spring Boot整合(一): spring-boot-starter-data-jpa 搭建持久层

Jpa与Druid线程池及Spring Boot整合(一) Jpa与Druid线程池及Spring Boot整合(二):几个坑 附录官网文档:core.domain-events域事件 (一)Jpa与Druid连接池及Spring Boot整合作为持久层,遇到系列问题,下面一 一记录: pom.xml 文件中加入必须的…

Linux之【进程间通信(IPC)】-总结篇

Linux之【进程间通信(IPC)】-总结篇 管道System V共享内存System V消息队列System V信号量IPC资源的管理方式 往期文章 1.进程间通信之管道 2.进程间通信之System V共享内存 管道 进程之间具有独立性,拥有自己的虚拟地址空间,因…

张驰咨询:提高企业竞争力,六西格玛设计公司(DFSS)在行动

六西格玛设计公司(DFSS)是一种专业从事六西格玛设计的企业,其主要作用是为客户提供高效的六西格玛设计服务,以帮助客户实现高品质、低成本和高效率的产品开发过程。六西格玛设计公司通常拥有一支专业的团队,具有丰富的六西格玛设计经验和技术…

Jupyter并发测试以后出现EOFError marshal data too short

Jupyter 并发测试以后出现EOFError: marshal data too short 背景 由于项目需求需要用户能进行网页在线运行python代码程序,调研后决定使用Jupyter的服务接口实现此功能,目前使用docker进行容器化部署,测试针对次服务进行并发测试。测试并发…

FL Studio for Windows-21.1.0.3713中文直装版功能介绍及系统配置要求

FL Studio 21简称FL水果软件,全称是:Fruity Loops Studio编曲,由于其Logo长的比较像一款水果因此,在大家更多的是喜欢称他为水果萝卜,FL studio21是目前最新的版本,这是一款可以让你的计算机就像是一个全功能的录音室&…

RabbitMQ:可靠消息传递的强大消息中间件

消息中间件在现代分布式系统中起着关键作用,它们提供了一种可靠且高效的方法来进行异步通信和解耦。在这篇博客中,我们将重点介绍 RabbitMQ,一个广泛使用的开源消息中间件。我们将深入探讨 RabbitMQ 的特性、工作原理以及如何在应用程序中使用…

Codeforces Round 891 (Div. 3)ABC

Codeforces Round 891 (Div. 3) 目录 A. Array Coloring题目大意思路代码 B. Maximum Rounding题目大意思路代码 C. Assembly via Minimums题目大意思路代码 A. Array Coloring 题目大意 给你一个包含 n n n个数字的数组,你的任务是判断这个数组是否可以划分成两个…

换架 3D 飞机,继续飞呀飞

相信大多数图扑 HT 用户都曾见过这个飞机的 Demo,在图扑发展的这十年,这个 Demo 是许多学习 HT 用户一定会参考的经典 Demo 之一。 这个 Demo 用简洁的代码生动地展示了 OBJ 模型加载、数据绑定、动画和漫游等功能的实现。许多用户参考这个简单的 Demo 后…

MySQL中用什么数据类型存IP地址

提到IP地址(IPv4),我们脑子里肯定立马浮现类似于192.168.0.1、127.0.0.1这种常见的IP地址,然后结合这个问题“MySQL中用什么数据类型存IP地址?”,于是乎脱口而出用char字符串类型存储。 然后再仔细想想发现,这个IP地址…

腾讯云标准型CVM云服务器详细介绍

腾讯云CVM服务器标准型实例的各项性能参数平衡,标准型云服务器适用于大多数常规业务,例如:web网站及中间件等,常见的标准型云服务器有CVM标准型S5、S6、SA3、SR1、S5se等规格,腾讯云服务器网来详细说下云服务器CVM标准…

页面切换后,滚动栏问题

项目场景: 提示:react项目antd后台管理系统 问题描述 后台管理系统从a页面进入b页面,a页面有数据(有滚动条,且scollTop大于0),进入b页面后,滚动条不是位于初始位置(scol…