使用numpy自定义数据集 使用tensorflow框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预

1. 引言

逻辑回归(Logistic Regression)是一种常见的分类算法,广泛应用于二分类问题。在本篇博客中,我们将使用numpy生成一个简单的自定义数据集,并使用TensorFlow框架构建和训练逻辑回归模型。训练完成后,我们会保存模型,并演示如何加载保存的模型进行预测。

2. 创建自定义数据集

首先,我们使用numpy生成一个简单的二分类数据集,包含两个特征和对应的标签。标签0表示负类,标签1表示正类。

import numpy as np# 设置随机种子,保证每次运行结果一致
np.random.seed(42)# 生成自定义数据集
X = np.random.rand(100, 2)  # 100个样本,2个特征
y = (X[:, 0] + X[:, 1] > 1).astype(int)  # 标签:如果两个特征之和大于1,标签为1,否则为0

这样我们就得到了一个简单的二分类数据集,X是特征矩阵,y是标签。

3. 构建逻辑回归模型

接下来,我们使用TensorFlow来构建逻辑回归模型。逻辑回归本质上是一个线性模型,通过Sigmoid函数输出概率,最终将其转化为二分类标签。

import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense# 构建模型
model = Sequential([Dense(1, input_dim=2, activation='sigmoid')  # 输入层2个特征,输出层1个节点,sigmoid激活函数
])# 编译模型
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

在这个模型中,我们只用了一个包含一个节点的输出层,使用sigmoid激活函数来输出分类概率。损失函数选择了binary_crossentropy,它是二分类问题常用的损失函数。

4. 训练模型

现在,我们使用生成的数据集来训练模型。

# 训练模型
model.fit(X, y, epochs=50, batch_size=10, verbose=1)

训练过程将进行50个周期,每批次包含10个样本。你可以根据自己的需求调整epochsbatch_size

5. 保存模型

训练完成后,我们将保存模型。TensorFlow提供了方便的保存方法,可以将整个模型(包括模型架构、权重和训练配置)保存在一个文件中。

# 保存模型
model.save('logistic_regression_model.h5')

保存后的模型文件logistic_regression_model.h5将包含模型的所有信息,稍后我们可以重新加载这个模型来进行预测。

6. 加载模型并进行预测

保存的模型可以在后续的工作中重新加载并使用。我们通过tensorflow.keras.models.load_model()来加载保存的模型。

# 加载模型
loaded_model = tf.keras.models.load_model('logistic_regression_model.h5')# 使用加载的模型进行预测
predictions = loaded_model.predict(X)# 输出预测结果(概率值)
print(predictions[:5])  # 打印前5个预测结果

这里我们通过加载的模型对输入数据X进行预测。由于是二分类问题,模型会输出一个概率值,我们可以根据这个概率值将其转换为标签(例如,概率大于0.5为正类)。

7. 总结

在本篇博客中,我们学习了如何使用numpy生成自定义数据集,使用TensorFlow框架构建并训练逻辑回归模型,保存模型并在之后加载模型进行预测。通过这种方式,你可以在训练完成后方便地保存和加载模型,从而实现模型的持久化,便于后续的应用和部署。

希望这篇博客对你理解逻辑回归和TensorFlow的使用有所帮助!你可以在此基础上扩展应用到更复杂的模型和数据集。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/8937.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

无耳科技 Solon v3.0.7 发布(2025农历新年版)

Solon 框架! Solon 框架由杭州无耳科技有限公司(下属 Noear 团队)开发并开源。是新一代,面向全场景的 Java 企业级应用开发框架。从零开始构建(非 java-ee 架构),有灵活的接口规范与开放生态。…

Redis常用命令合集【一】

1.Redis常用命令 Redis是典型的key-value数据库,key一般是字符串,而value包含很多不同的数据类型: Redis为了方便我们学习,将操作不同数据类型的命令也做了分组,在官网( https://redis.io/commands &#…

python学opencv|读取图像(四十八)使用cv2.bitwise_xor()函数实现图像按位异或运算

【0】基础定义 按位与运算:两个等长度二进制数上下对齐,全1取1,其余取0。 按位或运算:两个等长度二进制数上下对齐,有1取1,其余取0。 按位取反运算:一个二进制数,0变1,1变0。 按…

docker 学习笔记

一、docker容器快速上手以及简单操作 docker的image和container image镜像 docker image就是一个read.only文件,可以理解成一个模版,docker image具有分层的概念 可以自己制作,也可以从registry拉去 container容器 一个运行中的docker …

【PyTorch】5.张量索引操作

目录 1. 简单行、列索引 2. 列表索引 3. 范围索引 4. 布尔索引 5. 多维索引 个人主页:Icomi 在深度学习蓬勃发展的当下,PyTorch 是不可或缺的工具。它作为强大的深度学习框架,为构建和训练神经网络提供了高效且灵活的平台。神经网络作为…

穿心莲内酯(andrographolide)生物合成CYP72-文献精读106

Two CYP72 enzymes function as Ent-labdane hydroxylases in the biosynthesis of andrographolide in Andrographis paniculata 两种CYP72酶在穿心莲(Andrographis paniculata)中作为Ent-labdane羟化酶,在穿心莲内酯(andrograp…

关于圆周率的新认知 - 2

当未知长度的单位 1 和已完成长度的单位 1 之间的比例不是 1:1 而是其它的数值的时候,不难看出,这时候的圆周率就变成了“椭圆周率”。你可能要说,这不是椭圆积分吗?对了,这就是椭圆积分。但是我们不要考虑什么椭圆积分…

ARM64平台Flutter环境搭建

ARM64平台Flutter环境搭建 Flutter简介问题背景搭建步骤1. 安装ARM64 Android Studio2. 安装Oracle的JDK3. 安装 Dart和 Flutter 开发插件4. 安装 Android SDK5. 安装 Flutter SDK6. 同意 Android 条款7. 运行 Flutter 示例项目8. 修正 aapt2 报错9. 修正 CMake 报错10. 修正 N…

进程池的制作(linux进程间通信,匿名管道... ...)

目录 一、进程间通信的理解 1.为什么进程间要通信 2.如何进行通信 二、匿名管道 1.管道的理解 2.匿名管道的使用 3.管道的五种特性 4.管道的四种通信情况 5.管道缓冲区容量 三、进程池 1.进程池的理解 2.进程池的制作 四、源码 1.ProcessPool.hpp 2.Task.hpp 3…

新年祝词(原创)

新年将至,福进万户。 家家团圆,事事顺心。 喜迎财神,多寿添金。 瑞兽迎春,炮竹声起。 趋吉避凶,蛇年大吉。 中华崛起,人人自强。 天下大同,百姓富足。 有情有义,平易近人。 …

stack 和 queue容器的介绍和使用

1.stack的介绍 1.1stack容器的介绍 stack容器的基本特征和功能我们在数据结构篇就已经详细介绍了,还不了解的uu, 可以移步去看这篇博客哟: 数据结构-栈数据结构-队列 简单回顾一下,重要的概念其实就是后进先出,栈在…

python:洛伦兹变换

洛伦兹变换(Lorentz transformations)是相对论中的一个重要概念,特别是在讨论时空的变换时非常重要。在四维时空的背景下,洛伦兹变换描述了在不同惯性参考系之间如何变换时间和空间坐标。在狭义相对论中,洛伦兹变换通常…

DIY QMK量子键盘

最近放假了,趁这个空余在做一个分支项目,一款机械键盘,量子键盘取自固件名称QMK(Quantum Mechanical Keyboard)。 键盘作为计算机或其他电子设备的重要输入设备之一,通过将按键的物理动作转换为数字信号&am…

【Unity3D】aab包太大无法上传Google问题

目录 一、勾选Split Application Binary,Unity直接打aab包 勾选Split Application Binary选项的影响 不勾选Split Application Binary选项的影响 总结 2、导出Android工程打包aab 一、勾选Split Application Binary,Unity直接打aab包 超出150MB部分…

DeepSeek助力学术文献搜索!

搜集文献 宝子们如果是第一次发表学术论文,论文往往是会署名多个作者。在这种情况下,即便成功发表了论文,独立撰作或主导写作的挑战仍旧存在。那么,怎样才能独立地完成一篇属于自己的学术论文呢?对于初次尝试学术论文…

【时时三省】(C语言基础)文件的随机读写

山不在高,有仙则名。水不在深,有龙则灵。 ----CSDN 时时三省 fseek 根据文件指针的位置和偏移量来定位文件指针 示例: 这个输出的就是ade seek_cur的意思是从当前偏移量 2就是从a往后偏移两个就是d 偏移量 SEEK_CUR…

Python-基于PyQt5,json和playsound的通用闹钟

前言:刚刚结束2024年秋季学期的学习,接下来我们继续来学习PyQt5。由于之前我们已经学习了PyQt5以及PyUIC,Pyrcc和QtDesigner的安装,配置。所以接下来我们一起深入PyQt5,学习如何利用PyQt5进行实际开发-基于PyQt5,json和…

数据结构课程设计(三)构建决策树

3 决策树 3.1 需求规格说明 【问题描述】 ID3算法是一种贪心算法,用来构造决策树。ID3算法起源于概念学习系统(CLS),以信息熵的下降速度为选取测试属性的标准,即在每个节点选取还尚未被用来划分的具有最高信息增益的…

2024收尾工作

目录 开场白 栈与队列 LeetCode232. 用栈实现队列 LeetCode225. 用队列实现栈 LeetCode102. 二叉树的层序遍历 LeetCode103. 二叉树的锯齿形层序遍历 堆(优先级队列) 堆排序 LeetCode215. 数组中的第 k 个最大元素 总结 开场白 今天是除夕&…

纯css实现div宽度可调整

<!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><meta name"viewport" content"widthdevice-width, initial-scale1.0" /><title>纯css实现div尺寸可调整</title><style…