【实战项目】c++实现基于reactor的高并发服务器

基于Reactor的高并发服务器,分为反应堆模型,多线程,I/O模型,服务器,Http请求和响应五部分

​全局

反应堆模型

Channel

描述了文件描述符以及读写事件,以及对应的读写销毁回调函数,对应存储arg读写回调对应的参数

​Channel

Channel添加写和判断

  • 异或 |:相同为0,异为1

  • 按位与&:只有11为1,其它组合全部为0,即只有真真为真,其它一假则假

  • 去反 ~:二进制全部取反

  • 添加写属性:若对应为10 想要写添加写属性,与100异或,的110读写属性

  • 删除写属性: 第三位清零,若为110,第三位清零,将写取反011,在按位与& 010只留下读事件

// C++11 强类型枚举
enumclass FDEvent
{TimeOut = 0x01,       //十进制1,超时了 1ReadEvent = 0x02,    //十进制2       10WriteEvent = 0x04//十进制4  二进制 100
};
void Channel::writeEventEnable(bool flag)
{if (flag) //如果为真,添加写属性{// 异或 相同为0 异为1// WriteEvent 从右往左数第三个标志位1,通过异或 让channel->events的第三位为1m_events |= static_cast<int>(FDEvent::WriteEvent); // 按位异或 int events整型32位,0/1,}else// 如果不写,让channel->events 对应的第三位清零{// ~WriteEvent 按位与, ~WriteEvent取反 011 然后与 channel->events按位与&运算 只有11 为 1,其它皆为0只有同为真时则真,一假则假,1为真,0为假m_events = m_events & ~static_cast<int>(FDEvent::WriteEvent);  //channel->events 第三位清零之后,写事件就不再检测}
}
//判断文件描述符是否有写事件
bool Channel::isWriteEventEnable()
{return m_events & static_cast<int>(FDEvent::WriteEvent);  //按位与 ,第三位都是1,则是写,如果成立,最后大于0,如果不成立,最后为0
}

Dispatcher

Dispatcher作为父类函数,对应Epoll,Poll,Select模型。

反应堆模型

选择反应堆模型

在EventLoop初始化时,针对全局EventLoop,将m_dispatcher初始化为EpollDispatcher.

使用多态性,父类建立虚函数,子类继承复函数,使用override取代父类虚函数。达到选择反应堆模型。

m_dispatcher = new EpollDispatcher(this); //选择模型
//Dispatcher类为父类
virtual ~Dispatcher();  //也虚函数,在多态时
virtual int add();   //等于 = 0纯虚函数,就不用定义
//删除 将某一个节点从epoll树上删除
virtual int remove();
//修改
virtual int modify();
//事件检测, 用于检测待检测三者之一模型epoll_wait等的一系列事件上是否有事件被激活,读/写事件
virtual int dispatch(int timeout = 2);//单位 S 超时时长//Epoll子类继承父类,override多态性覆盖父类函数,同时public继承,继承Dispatcher的私有变量
class EpollDispatcher :public Dispatcher  //继承父类Dispatcher
{public:
EpollDispatcher(struct EventLoop* evLoop);
~EpollDispatcher();  //也虚函数,在多态时
// override修饰前面的函数,表示此函数是从父类继承过来的函数,子类将重写父类虚函数
// override会自动对前面的名字进行检查,
int add() override;   //等于 =纯虚函数,就不用定义 
//删除 将某一个节点从epoll树上删除
int remove() override;
//修改
int modify() override;
//事件检测, 用于检测待检测三者之一模型epoll_wait等的一系列事件上是否有事件被激活,读/写事件
int dispatch(int timeout = 2) override;//单位 S 超时时长
// 不改变的不写,直接继承父类

EventLoop

处理所有的事件,启动反应堆模型,处理机会文件描述符后的事件,添加任务,处理任务队列 调用dispatcher中的添加移除,修改操作 存储着任务队列m_taskQ 存储fd和对应channel对应关系:m_channelmap

相关视频推荐

6种epoll的设计方法(单线程epoll、多线程epoll、多进程epoll)及每种epoll的应用场景

手写一个reactor网络模型,准备好linux开发环境

手把手实现线程池(120行),实现异步操作,解决项目性能问题

免费学习地址:c/c++ linux服务器开发/后台架构师

需要C/C++ Linux服务器架构师学习资料加qun812855908获取(资料包括C/C++,Linux,golang技术,Nginx,ZeroMQ,MySQL,Redis,fastdfs,MongoDB,ZK,流媒体,CDN,P2P,K8S,Docker,TCP/IP,协程,DPDK,ffmpeg等),免费分享

私有函数变量

// CHannelElement结构体
//定义任务队列的节点 类型,文件描述符信息
struct ChannelElement
{ElemType type;       //如何处理该节点中ChannelChannel* channel;   //文件描述符信息
};//私有函数变量
//加入开关 EventLoop是否工作
bool m_isQuit;
//该指针指向之类的实例epoll,poll,select
Dispatcher* m_dispatcher; 
//任务队列,存储任务,遍历任务队列就可以修改dispatcher检测的文件描述符
//任务队列
queue<ChannelElement*>m_taskQ;
//map 文件描述符和Channel之间的对应关系  通过数组实现
map<int,Channel*> m_channelmap;
// 线程相关,线程ID,name
thread::id m_threadID;
string m_threadName;  //主线程只有一个,固定名称,初始化要分为两个
//互斥锁,保护任务队列
mutex m_mutex;
// 整型数组
int m_socketPair[2]; //存储本地通信fd通过socketpair初始化

​EventLoop事件处理

​m_channelmap

​任务队列ChannelElement

任务队列

反应堆运行

反应堆模型启动之后将会在while循环中一直执行下去。首先调用dispatcher调用Epoll的wait函数,等待内核回应,根据其读写请求调用evLoop的enactive函数进行相关的读写操作。

int EventLoop::Run()
{m_isQuit = false; //不退出//比较线程ID,当前线程ID与我们保存的线程ID是否相等if (m_threadID != this_thread::get_id()){//不相等时 直接返回-1return-1;}// 循环进行时间处理while (!m_isQuit) //只要没有停止 死循环{//调用初始化时选中的模型Epoll,Poll,Selectm_dispatcher->dispatch(); //ProcessTaskQ();    //处理任务队列}return0;
}

enactive

根据传入的event调用对应Channel对应的读写回调函数

int EventLoop::eventActive(int fd, int event)
{// 判断函数传入的参数是否为有效if (fd < 0){return-1;}//基于fd从EventLoop取出对应的ChannelChannel* channel = m_channelmap[fd]; //channelmap根据对应的fd取出对应的channel// 判断取出channel的fd与当前的fd是否相同assert(channel->getSocket() == fd); //如果为假,打印出报错信息if (event & (int)FDEvent::ReadEvent && channel->readCallback) //channel->readCallback不等于空{//调用channel的读回调函数channel->readCallback(const_cast<void*>(channel->getArg()));}if (event & (int)FDEvent::WriteEvent && channel->writeCallback){channel->writeCallback(const_cast<void*>(channel->getArg()));}return0;
}

添加任务

int EventLoop::AddTask(Channel* channel, ElemType type)
{//加锁,有可能是当前线程,也有可能是主线程m_mutex.lock();// 创建新节点ChannelElement* node = new ChannelElement;node->channel = channel;node->type = type;m_taskQ.push(node);m_mutex.unlock();// 处理节点/** 如当前EventLoop反应堆属于子线程*   1,对于链表节点的添加:可能是当前线程也可能是其它线程(主线程)*       1),修改fd的事件,可能是当前线程发起的,还是当前子线程进行处理*       2),添加新的fd,和新的客户端发起连接,添加任务节点的操作由主线程发起*   2,主线程只负责和客户端建立连接,判断当前线程,不让主线程进行处理,分给子线程*       不能让主线程处理任务队列,需要由当前的子线程处理*/if (m_threadID == this_thread::get_id()){//当前子线程// 直接处理任务队列中的任务ProcessTaskQ();}else{//主线程 -- 告诉子线程处理任务队列中的任务// 1,子线程在工作 2,子线程被阻塞了:1,select,poll,epoll,如何解除其阻塞,在本代码阻塞时长是2s// 在检测集合中添加属于自己(额外)的文件描述,不负责套接字通信,目的控制文件描述符什么时候有数据,辅助解除阻塞// 满足条件,两个文件描述符,可以相互通信,//1,使用pipe进程间通信,进程更可,//2,socketpair 文件描述符进行通信taskWakeup(); //主线程调用,相当于向socket添加了数据}return0;
}

处理任务

从任务队列中取出一个任务,根据其任务类型,调用反应堆模型对应,将channel在内核中的检测进行删除,修改,或添加

int EventLoop::ProcessTaskQ()
{//遍历链表while (!m_taskQ.empty()){//将处理后的task从当前链表中删除,(需要加锁)// 取出头结点m_mutex.lock();ChannelElement* node = m_taskQ.front(); //从头部m_taskQ.pop();  //把头结点弹出,相当于删除 m_mutex.unlock();//读链表中的Channel,根据Channel进行处理Channel* channel = node->channel;// 判断任务类型if (node->type == ElemType::ADD){// 需要channel里面的文件描述符evLoop里面的数据//添加  -- 每个功能对应一个任务函数,更利于维护Add(channel);}elseif (node->type == ElemType::DELETE){//Debug("断开了连接");//删除Remove(channel);// 需要资源释放channel 关掉文件描述符,地址堆内存释放,channel和dispatcher的关系需要删除}elseif (node->type == ElemType::MODIFY){//修改  的文件描述符事件Modify(channel);}delete node;}return0;
}
int EventLoop::Add(Channel* channel)
{//把任务节点中的任务添加到dispatcher对应的检测集合里面,int fd = channel->getSocket();//找到fd对应数组元素的位置,并存储if (m_channelmap.find(fd) == m_channelmap.end()){m_channelmap.insert(make_pair(fd, channel)); //将当前fd和channel添加到mapm_dispatcher->setChannel(channel); //设置当前channelint ret = m_dispatcher->add();  //加入return ret;}return-1;
}int EventLoop::Remove(Channel* channel)
{//调用dispatcher的remove函数进行删除// 将要删除的文件描述符int fd = channel->getSocket();// 判断文件描述符是否已经在检测的集合了if (m_channelmap.find(fd) == m_channelmap.end()){return-1;}//从检测集合中删除 封装了poll,epoll selectm_dispatcher->setChannel(channel);int ret = m_dispatcher->remove();return ret;
}int EventLoop::Modify(Channel* channel)
{// 将要修改的文件描述符int fd = channel->getSocket();// TODO判断if (m_channelmap.find(fd) == m_channelmap.end()) {return-1; }//从检测集合中删除m_dispatcher->setChannel(channel);int ret = m_dispatcher->modify();return ret;
}

多线程

ThreadPool

定义线程池,运行线程池,public函数取出线程池中某个子线程的反应堆实例EventLoop,线程池的EventLoop反应堆模型事件由主线程传入,属于主线程,其内部,任务队列,fd和Channel对应关系,ChannelElement都是所有线程需要使用的数据

线程池工作

线程池运行创建子工作线程

线程池运行语句在主线层运行,根据当前线程数量,申请响应的工作线程池,并将工作线程运行起来,将工作线程加入到线程池的vector数组当中。

void ThreadPool::Run()
{assert(!m_isStart); //运行期间此条件不能错//判断是不是主线程if(m_mainLoop->getTHreadID() != this_thread::get_id()){exit(0);}// 将线程池设置状态标志为启动m_isStart = true;// 子线程数量大于0if (m_threadNum > 0){for (int i = 0; i < m_threadNum; ++i){WorkerThread* subThread = new WorkerThread(i); // 调用子线程subThread->Run();m_workerThreads.push_back(subThread);}}
}

取出工作线程池中的EventLoop

EventLoop* ThreadPool::takeWorkerEventLoop()
{//由主线程来调用线程池取出反应堆模型assert(m_isStart); //当前程序必须是运行的//判断是不是主线程if (m_mainLoop->getTHreadID() != this_thread::get_id()){exit(0);}//从线程池中找到一个子线层,然后取出里面的反应堆实例EventLoop* evLoop = m_mainLoop; //将主线程实例初始化if (m_threadNum > 0){evLoop = m_workerThreads[m_index]->getEventLoop();//雨露均沾,不能一直是一个pool->index线程m_index = ++m_index % m_threadNum;}return evLoop;
}

工作线程运行

在子线程中申请反应堆模型,供子线程在客户端连接时取出 ,供类Connection使用

void WorkerThread::Run()
{//创建子线程,3,4子线程的回调函数以及传入的参数//调用的函数,以及此函数的所有者thism_thread = new thread(&WorkerThread::Running,this);// 阻塞主线程,让当前函数不会直接结束,不知道当前子线程是否运行结束// 如果为空,子线程还没有初始化完毕,让主线程等一会,等到初始化完毕unique_lock<mutex> locker(m_mutex);while (m_evLoop == nullptr){m_cond.wait(locker);}
}void* WorkerThread::Running()
{m_mutex.lock();//对evLoop做初始化m_evLoop = new EventLoop(m_name);m_mutex.unlock();m_cond.notify_one(); //唤醒一个主线程的条件变量等待解除阻塞// 启动反应堆模型m_evLoop->Run();
}

IO 模型

Buffer

读写内存结构体,添加字符串,接受套接字数据,将写缓存区数据发送

读写位置移动

发送目录

int Buffer::sendData(int socket)
{// 判断buffer里面是否有需要发送的数据 得到未读数据即待发送int readable = readableSize();if (readable > 0){//发送出去buffer->data + buffer->readPos 缓存区的位置+已经读到的位置// 管道破裂 -- 连接已经断开,服务器继续发数据,出现管道破裂 -- TCP协议// 当内核产生信号时,MSG_NOSIGNAL忽略,继续保持连接// Linux的信号级别高,Linux大多数信号都会终止信号int count = send(socket, m_data + m_readPos, readable, MSG_NOSIGNAL);if (count > 0){// 往后移动未读缓存区位置m_readPos += count;// 稍微休眠一下usleep(1); // 1微妙}return count;}return0;
}

发送文件

发送文件是不需要将读取到的文件放入缓存的,直接内核发送提高文件IO效率。

int Buffer::sendData(int cfd, int fd, off_t offset, int size)
{int count = 0;while (offset < size){//系统函数,发送文件,linux内核提供的sendfile 也能减少拷贝次数// sendfile发送文件效率高,而文件目录使用send//通信文件描述符,打开文件描述符,fd对应的文件偏移量一般为空,//单独单文件出现发送不全,offset会自动修改当前读取位置int ret = (int)sendfile(cfd, fd, &offset, (size_t)(size - offset));if (ret == -1 && errno == EAGAIN){printf("not data ....");perror("sendfile");}count += (int)offset;}return count;
}

TcpConnection

负责子线程与客户端进行通信,分别存储这读写销毁回调函数->调用相关buffer函数完成相关的通信功能

​TcpConnection

主线程

初始化

申请读写缓存区,并初始化Channel,初始化子线程与客户端与服务器进行通信时回调函数

TcpConnection::TcpConnection(int fd, EventLoop* evloop)
{//并没有创建evloop,当前的TcpConnect都是在子线程中完成的m_evLoop = evloop;m_readBuf = new Buffer(10240); //10Km_writeBuf = new Buffer(10240);// 初始化m_request = new HttpRequest;m_response = new HttpResponse;m_name = "Connection-" + to_string(fd);// 服务器最迫切想知道的时候,客户端有没有数据到达m_channel =new Channel(fd,FDEvent::ReadEvent, processRead, processWrite, destory, this);// 把channel放到任务循环的任务队列里面evloop->AddTask(m_channel, ElemType::ADD);
}

读写回调

读事件将调用HttpRequest解析,客户端发送的读取请求。写事件,将针对读事件将对应的数据写入缓存区,由写事件进行发送。但由于效率的考虑,在读事件时,已经设置成边读变发送提高效率,发送文件也将采用Linux内核提供的sendfile方法,不读取内核直接发送,比send的效率快了,很多,在很大程度上,写事件的写功能基本被架空。

int TcpConnection::processRead(void* arg)
{TcpConnection* conn = static_cast<TcpConnection*>(arg);// 接受数据 最后要存储到readBuf里面int socket = conn->m_channel->getSocket();int count = conn->m_readBuf->socketRead(socket);// data起始地址 readPos该读的地址位置Debug("接收到的http请求数据: %s", conn->m_readBuf->data());if (count > 0){// 接受了http请求,解析http请求#ifdef MSG_SEND_AUTO//添加检测写事件conn->m_channel->writeEventEnable(true);//  MODIFY修改检测读写事件conn->m_evLoop->AddTask(conn->m_channel, ElemType::MODIFY);
#endifbool flag = conn->m_request->parseHttpRequest(conn->m_readBuf, conn->m_response,conn->m_writeBuf, socket);if (!flag){//解析失败,回复一个简单的HTMLstring errMsg = "Http/1.1 400 Bad Request\r\n\r\n";conn->m_writeBuf->appendString(errMsg);}}else{#ifdef MSG_SEND_AUTO  //如果被定义,//断开连接conn->m_evLoop->AddTask(conn->m_channel, ElemType::DELETE);
#endif}// 断开连接 完全写入缓存区再发送不能立即关闭,还没有发送
#ifndef MSG_SEND_AUTO  //如果没有被定义,conn->m_evLoop->AddTask(conn->m_channel, ElemType::DELETE);
#endifreturn0;
}//写回调函数,处理写事件,将writeBuf中的数据发送给客户端
int TcpConnection::processWrite(void* arg)
{Debug("开始发送数据了(基于写事件发送)....");TcpConnection* conn = static_cast<TcpConnection*>(arg);// 发送数据int count = conn->m_writeBuf->sendData(conn->m_channel->getSocket());if (count > 0){// 判断数据是否全部被发送出去if (conn->m_writeBuf->readableSize() == 0){// 数据发送完毕// 1,不再检测写事件 --修改channel中保存的事件conn->m_channel->writeEventEnable(false);// 2, 修改dispatcher中检测的集合,往enentLoop反映模型认为队列节点标记为modifyconn->m_evLoop->AddTask(conn->m_channel, ElemType::MODIFY);//3,若不通信,删除这个节点conn->m_evLoop->AddTask(conn->m_channel, ElemType::DELETE);}}return0;
}

HttpRequest

定义http 请求结构体添加请求头结点,解析请求行,头,解析/处理http请求协议,获取文件类型 发送文件/目录 设置请求url,Method,Version ,state

处理客户端解析请求

在while循环内部,完成对请求行和请求头的解析。解析完成之后,根据请求行,读取客户端需要的数据,并对应进行操作

bool HttpRequest::parseHttpRequest(Buffer* readBuf, HttpResponse* response, Buffer* sendBuf, int socket)
{bool flag = true;// 先解析请求行while (m_curState !=PressState::ParseReqDone){// 根据请求头目前的请求状态进行选择switch (m_curState){case PressState::ParseReqLine:flag = parseRequestLine(readBuf);break;case PressState::ParseReqHeaders:flag = parseRequestHeader(readBuf);break;case PressState::ParseReqBody: //post的请求,咱不做处理// 读取post数据break;default:break;}if (!flag){return flag;}//判断是否解析完毕,如果完毕,需要准备回复的数据if (m_curState == PressState::ParseReqDone){// 1,根据解析出的原始数据,对客户端请求做出处理processHttpRequest(response);// 2,组织响应数据并发送response->prepareMsg(sendBuf, socket);}}// 状态还原,保证还能继续处理第二条及以后的请求m_curState = PressState::ParseReqLine;//再解析请求头return flag;
}

处理客户端请求

根据请求行规则判断是请求目录,还是请求文件,调用Buffer相关发送目录,和发送文件重载函数,完成通信任务。

bool HttpRequest::processHttpRequest(HttpResponse* response)
{if (strcasecmp(m_method.data(), "get") != 0)   //strcasecmp比较时不区分大小写{//非get请求不处理return-1;}m_url = decodeMsg(m_url); // 避免中文的编码问题 将请求的路径转码 linux会转成utf8//处理客户端请求的静态资源(目录或文件)constchar* file = NULL;if (strcmp(m_url.data(), "/") == 0) //判断是不是根目录{file = "./";}else{file = m_url.data() + 1;  // 指针+1 把开始的 /去掉吧}//判断file属性,是文件还是目录struct stat st;int ret = stat(file, &st); // file文件属性,同时将信息传入st保存了文件的大小if (ret == -1){//文件不存在  -- 回复404//sendHeadMsg(cfd, 404, "Not Found", getFileType(".html"), -1);//sendFile("404.html", cfd); //发送404对应的html文件response->setFileName("404.html");response->setStatusCode(StatusCode::NotFound);// 响应头response->addHeader("Content-type", getFileType(".html"));response->sendDataFunc = sendFile;return0;}response->setFileName(file);response->setStatusCode(StatusCode::OK);//判断文件类型if (S_ISDIR(st.st_mode)) //如果时目录返回1,不是返回0{//把这个目录中的内容发送给客户端//sendHeadMsg(cfd, 200, "OK", getFileType(".html"), (int)st.st_size);//sendDir(file, cfd);// 响应头response->addHeader("Content-type", getFileType(".html"));response->sendDataFunc = sendDir;}else{//把这个文件的内容发给客户端//sendHeadMsg(cfd, 200, "OK", getFileType(file), (int)st.st_size);//sendFile(file, cfd);// 响应头response->addHeader("Content-type", getFileType(file));response->addHeader("Content-length", to_string(st.st_size));response->sendDataFunc = sendFile;}returnfalse;
}

HttpResponse

定义http响应,添加响应头,准备响应的数据

服务器

TcpServer

服务器类,复制服务器的初始化,设置监听,启动服务器,并接受主线程的连接请求

TcpServer工作流程

主函数

  • 传入用户输入的端口和文件夹

  • 端口将作为服务器端口,文件夹将作为浏览器访问的文件夹

  • 初始化TcpServer服务器实例 - 传入端口和初始化线程个数

  • 运行服务器

#include <stdlib.h>
#include <unistd.h>
#include "TcpServer.h"
//初始化监听的套接字
// argc 输入参数的个数
// argv[0]可执行程序的名称 
// argv[1]传入的第一个参数, port
// argv[2]传入的第二个参数   path
int main(int argc, char* argv[])
{
#if 0if (argc < 3){printf("./a.out port path\n");return-1;}unsigned short port = (unsigned short)atoi(argv[1]);//切换服务器的根目录,将根目录当前目录切换到其它目录chdir(argv[2]);// 启动服务器
#else// VS code 调试unsigned short port = 8080;chdir("/home/foryouos/blog");
#endif// 创建服务器实例TcpServer* server = new TcpServer(port, 4);// 服务器运行 - 启动线程池-对监听的套接字进行封装,并放到主线程的任务队列,启动反应堆模型// 底层的epoll也运行起来,server->Run();return0;
}

初始化TcpServer

初始化TcpServer

启动TcpServer

启动TcpServer

检测到客户端请求

客户端请求

详细代码:https://github.com/foryouos/cppserver-linux/tree/main/c_simple_server/cpp_server

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/89505.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

域名配置HTTPS

一、注册域名 这个可以在各大平台注册&#xff0c;具体看一下就会注册了&#xff0c;自己挑选一个自己喜欢的域名。 步骤一般也就是先实名&#xff0c;实名成功了才能注册域名。 二、办理SSL证书 这里使用的是阿里云的SSL免费证书 1、申请证书 二、填写申请 三、域名绑定生…

golang—面试题大全

目录标题 sliceslice和array的区别slice扩容机制slice是否线程安全slice分配到栈上还是堆上扩容过程中是否重新写入go深拷贝发生在什么情况下&#xff1f;切片的深拷贝是怎么做的copy和左值进行初始化区别slice和map的区别 mapmap介绍map的key的类型map对象如何比较map的底层原…

【MFC】08.MFC消息,自定义消息,常用控件(MFC菜单创建大总结),工具栏,状态栏-笔记

本专栏上几篇文章讲解了MFC几大机制&#xff0c;今天带领大家学习MFC自定义消息以及常用控件&#xff0c;最常用的控件请查看本专栏第一二篇文章&#xff0c;今天这篇文章介绍工具栏&#xff0c;菜单和状态栏&#xff0c;以及菜单创建大总结。 文章目录 MFC消息分类&#xff1…

XUbuntu22.04之快速切换Terminal与Chromium窗口(一百八十九)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 人生格言&#xff1a; 人生…

24届近5年南京工业大学自动化考研院校分析

今天给大家带来的是南京工业大学控制考研分析 满满干货&#xff5e;还不快快点赞收藏 一、南京工业大学 学校简介 南京工业大学&#xff08;Nanjing Tech University&#xff09;&#xff0c;简称“南工”&#xff0c;位于江苏省南京市&#xff0c;由国家国防科技工业局、住…

Java多线程编程:实现并发处理的高效利器

Java多线程编程&#xff1a;实现并发处理的高效利器 作者&#xff1a;Stevedash 发表于&#xff1a;2023年8月13日 20点45分 来源&#xff1a;Java 多线程编程 | 菜鸟教程 (runoob.com) ​ 在计算机领域&#xff0c;多线程编程是一项重要的技术&#xff0c;可以使程序同时执…

Idea 反编译jar包

实际项目中&#xff0c;有时候会需要更改jar包源码来达到业务需求&#xff0c;本文章将介绍一下如何通过Idea来进行jar反编译 1、Idea安装decompiler插件 2、找到decompiler插件文件夹 decompiler插件文件夹路径为&#xff1a;idea安装路径/plugins/java-decompiler/lib 3、…

【Sklearn】基于K邻近算法的数据分类预测(Excel可直接替换数据)

【Sklearn】基于K邻近算法的数据分类预测&#xff08;Excel可直接替换数据&#xff09; 1.模型原理模型原理&#xff1a;数学模型&#xff1a; 2.模型参数3.文件结构4.Excel数据5.下载地址6.完整代码7.运行结果 1.模型原理 K最近邻&#xff08;K-Nearest Neighbors&#xff0c…

搭建网站并内网穿透实现公网访问本地SQL Server数据库【无公网IP内网穿透】

文章目录 前言1. 安装网站运行和发布必备软件2. 安装PHPStudy3. 安装wordpress4. 进入wordpress安装程序&#xff0c;进行网页编辑和设置5. 安装URL插件6. 安装Cpolar7. 创建自己的数据隧道 前言 在普通电脑用户看来&#xff0c;建立自己的网站总是一件高大上的事情&#xff0…

软件测试四年,总结下功能测试用例设计思路

我们为什么要写好一份测试用例呢&#xff1f;测试同学应该都知道测试用例的重要性&#xff0c;测试用例就是我们测试的依据&#xff0c;也是测试过程中不能缺少的测试文档。 一、用例编写规范目的&#xff1a; 1、提高测试用例的可读性&#xff0c;可执行性、合理性。 2、测…

SpringBoot对一个URL通过method(GET、POST、PUT、DELETE)实现增删改查操作

目录 1. rest风格基础2. 开启方法3. 实战练习 1. rest风格基础 我们都知道GET、POST、PUT、DELETE分别对应查、增、改、删除 虽然Postman这些工具可以直接发送GET、POST、PUT、DELETE请求。但是RequestMapping并不支持PUT和DELETE请求操作。需要我们手动开启 2. 开启方法 P…

CSS 盒模型是什么?它包含哪些属性?标准盒模型/怪异盒模型

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 盒模型⭐ 标准盒模型⭐ 怪异盒模型⭐ 写在最后 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 记得点击上方或者右侧链接订阅本专栏哦 几何带你启航前端之旅 欢迎来到前端入门之旅&#xff01;这个专栏是为那些对Web开发感…

微服务Eureka注册中心

目录 一、Eureka的结构和作用 二、搭建eureka-server 三、服务注册 四、服务发现 假如我们的服务提供者user-service部署了多个实例&#xff0c;如图&#xff1a; 存在的问题&#xff1a; order-service在发起远程调用的时候&#xff0c;该如何得知user-service实例的ip地址…

关于APP备案、小程序备案的问题,如何备案?

近日&#xff0c;工信部发布了关于开展移动互联网应用程序备案工作的通知。为落实相关法律法规要求&#xff0c;促进互联网行业规范健康发展&#xff0c;进一步做好移动互联网信息服务管理&#xff0c;现组织开展移动互联网应用程序&#xff08;以下简称 APP&#xff09;备案工…

Python Opencv实践 - 图像平移

import numpy as np import matplotlib.pyplot as pltimg cv.imread("../SampleImages/pomeranian.png", cv.IMREAD_COLOR)#图像平移 #cv.warpAffine(src, M, dsize[, dst[, flags[, borderMode[, borderValue]]]]) # M是仿射变换矩阵&#xff0c;对于平移来说M是一…

微信小程序实现双向滑动快捷选择价格(价格区间)

实现样子 提示&#xff1a;效果可以自己自定义&#xff0c;自己将文字样式更改为自己项目属性即可 实现达到方法 1、左边为最低价&#xff0c;右边为最高价格&#xff0c;可以拖动左边最低价选择价格。拖动右边为最高价。 2、当两个价格重合时&#xff0c;继续拖动&#xff0…

OPENCV C++(十)gramm矫正+直方图均衡化

两者都是只对单通道使用&#xff0c;对多通道的话 就需要分离通道处理再合并通道 两种方法&#xff0c;第一个要运算次数太多了&#xff0c;第二个只需要查表 伽马矫正函数&#xff0c;这里用第二种方法&#xff0c;且写法有点高级 int gammaCorrection(cv::Mat srcMat, cv::…

RedisDesktopManage

RDM 简介下载安装 简介 RedisDesktopManager&#xff08;RDM&#xff09;是一个开源的跨平台图形界面工具&#xff0c;用于管理和操作 Redis 数据库。它提供了一个用户友好的界面&#xff0c;使用户能够轻松地连接、浏览、查询和修改 Redis 数据&#xff0c;而无需使用命令行界…

数据结构入门:队列

目录 文章目录 前言 1.队列 1.1 队列的概念及结构 1.2 队列的实现 1.2.1 队列的定义 1.2.2队列的初始化 1.2.3 入队 1.2.4 判空 1.2.5 出队 1.2.6 队头队尾数据 1.2.7 队列长度 1.2.8 队列销毁 总结 前言 队列&#xff0c;作为一种重要的数据结构&#xff0c;在计算机科学中扮演…

Web菜鸟教程 - Swagger实现自动生成文档

如果是一个人把啥都开发了&#xff0c;那用不到Swagger-UI&#xff0c;但一般情况是前后端分离的&#xff0c;所以就需要告诉前端开发人员都有哪些接口&#xff0c;传入什么参数&#xff0c;怎么调用&#xff0c;返回什么。有了Swagger-UI就能把这部分文档编写的业务给省去了。…