基于亚奈奎斯特采样和SOMP算法的平板脉冲响应空间插值matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

matlab2022a

3.部分核心程序

......................................................................
%fine regular grid
NSamples      = 4;%采样间隔
Im            = double(images(:,:,1));%R通道图像
image2(:,:,1) = func_SOMP_tops1(Im,Num_Iter,NSamples,R_size,C_size);%SOMP算法调用
Im            = double(images(:,:,2));%G通道图像
image2(:,:,2) = func_SOMP_tops1(Im,Num_Iter,NSamples,R_size,C_size);%SOMP算法调用
Im            = double(images(:,:,3));%B通道图像
image2(:,:,3) = func_SOMP_tops1(Im,Num_Iter,NSamples,R_size,C_size);%SOMP算法调用subplot(222);
imshow(uint8(image2));%显示重构效果图
hold on;
%显示白色点
for i = 1:R_size%循环for j = 1:C_size%循环if mod(i,NSamples)==1 & mod(j,NSamples)==1%采用间隔 plot(i,j,'wo','LineWidth',1,'MarkerEdgeColor','k','MarkerFaceColor','w','MarkerSize',5);%画白点endend
end
title('reconstruction with the fine regular grid');%显示标题%%
%coarse regular grid
NSamples      = 8;
Im            = double(images(:,:,1));%R通道图像
image3(:,:,1) = func_SOMP_tops2(Im,Num_Iter,NSamples,R_size,C_size);%SOMP算法调用
Im            = double(images(:,:,2));%G通道图像
image3(:,:,2) = func_SOMP_tops2(Im,Num_Iter,NSamples,R_size,C_size);%SOMP算法调用
Im            = double(images(:,:,3));%B通道图像
image3(:,:,3) = func_SOMP_tops2(Im,Num_Iter,NSamples,R_size,C_size);%SOMP算法调用subplot(223);
imshow(uint8(image3));
hold on;
%显示白色点
for i = 1:R_sizefor j = 1:C_sizeif mod(i,NSamples)==1 & mod(j,NSamples)==1%采用间隔 plot(i,j,'wo','LineWidth',1,'MarkerEdgeColor','k','MarkerFaceColor','w','MarkerSize',5);%画白点endend
end
title('reconstruction with the coarse regular grid with Fourier interpolation');%显示标题%%
%random grid
%下面的语句是:随机采用网格点设置
tmps     = rand(R_size,C_size);
Nsamples = zeros(R_size,C_size);
for i = 1:R_sizefor j = 1:C_sizeif tmps(i,j)>0.985Nsamples(i,j)=1; elseNsamples(i,j)=0;  endend
endIm            = double(images(:,:,1));%R通道图像
image4(:,:,1) = func_SOMP_tops3(Im,Num_Iter,Nsamples,R_size,C_size);%SOMP算法调用
Im            = double(images(:,:,2));%G通道图像
image4(:,:,2) = func_SOMP_tops3(Im,Num_Iter,Nsamples,R_size,C_size);%SOMP算法调用
Im            = double(images(:,:,3));%B通道图像
image4(:,:,3) = func_SOMP_tops3(Im,Num_Iter,Nsamples,R_size,C_size);%SOMP算法调用subplot(224);
imshow(uint8(image4));
hold on;
%显示白色点
for i = 1:R_sizefor j = 1:C_sizeif Nsamples(i,j)==1%采用间隔 plot(i,j,'wo','LineWidth',1,'MarkerEdgeColor','k','MarkerFaceColor','w','MarkerSize',5);%画白点hold on;endend
end
title('reconstruction with the fine regular grid');%显示标题
03_007m

4.算法理论概述

      平板脉冲响应(Pulse Response)是通信和雷达等领域中的重要参数,它描述了信号在空间中传播的特性。在现实应用中,获取完整的脉冲响应通常是耗时且昂贵的。基于亚奈奎斯特采样和SOMP算法的平板脉冲响应空间插值是一种用于从有限采样数据中估计完整脉冲响应的方法。

       亚奈奎斯特采样是一种在信号频率谱存在带限特性时,使用低于奈奎斯特定理的采样率进行采样的方法。对于带限信号,采样频率可以低于信号最高频率的两倍。这种采样方法可以节省存储和传输开销。

       亚奈奎斯特采样是一种在信号频率谱存在带限特性时,使用低于奈奎斯特定理的采样率进行采样的方法。对于带限信号,采样频率可以低于信号最高频率的两倍。这种采样方法可以节省存储和传输开销。

       SOMP(Sparse Orthogonal Matching Pursuit)算法是一种用于稀疏信号重构的迭代算法。它通过迭代地选择与残差最相关的稀疏原子(例如,在信号表示中的原子函数)来逼近原始信号。SOMP算法能够高效地从少量观测数据中恢复稀疏信号。

SOMP算法的实现过程包括以下步骤:

  1. 初始化残差为观测数据。
  2. 在每一步中,选择与当前残差最相关的稀疏原子,并添加到信号表示中。
  3. 更新残差,即将观测数据减去已选择的原子的贡献。
  4. 重复步骤2和3,直到达到预定的稀疏度或误差要求。

      基于亚奈奎斯特采样和SOMP算法的平板脉冲响应空间插值将这两种方法结合起来,用于从有限采样数据中估计完整的平板脉冲响应。首先,使用亚奈奎斯特采样获取脉冲响应的有限采样数据。然后,应用SOMP算法来从这些有限采样数据中重构脉冲响应。

      基于亚奈奎斯特采样和SOMP算法的平板脉冲响应空间插值的实现过程如下:

  1. 使用亚奈奎斯特采样获取平板脉冲响应的有限采样数据。
  2. 初始化残差为观测数据。
  3. 在每一步中,选择与当前残差最相关的脉冲响应原子,并添加到重构的脉冲响应中。
  4. 更新残差,即将观测数据减去已选择的原子的贡献。
  5. 重复步骤3和4,直到达到预定的稀疏度或误差要求。
  6. 得到重构的平板脉冲响应。

       基于亚奈奎斯特采样和SOMP算法的平板脉冲响应空间插值在雷达、无线通信等领域具有广泛应用。通过从有限采样数据中恢复完整的脉冲响应,可以提高系统性能和信号处理效率。

 

5.算法完整程序工程

OOOOO

OOO

O

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/89512.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

springboot邮件任务

<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-mail</artifactId></dependency> 依赖 配置文件 spring.mail.username1393087444qq.com spring.mail.password************* spring.mail.hos…

C语言学习笔记---数据的存储详解

C语言程序设计笔记---015 C语言数据的存储1、数据类型的意义1.1、unsigned与signed数据类型例程11.2、补码与原码相互转换例程2 2、大小端的介绍2.1、大小端的例程12.2、大小端的例程2 --- 判断当前编译器环境属于大端或小端 3、综合练习题探究数据的存储3.1、练习题13.2、练习…

求Win11系统virtualbox+vagrant安装MacOS虚拟机

文章目录 一、背景二、素材2.1、virtualboxvagrant 三、问题3.1、安装失败3.2、第二个失败3.3、网络说 四、求助 一、背景 题主&#xff0c;主要是穷&#xff0c;没钱买mac笔记本或相关系统的苹果产品&#xff0c;哈哈&#xff0c;偶尔也有用过MacOS系统&#xff0c;只是还没有…

Android Studio实现列表展示图片

效果&#xff1a; MainActivity 类 package com.example.tabulation;import android.content.Intent; import android.os.Bundle; import android.view.View;import androidx.appcompat.app.AppCompatActivity; import androidx.recyclerview.widget.LinearLayoutManager; im…

短视频账号矩阵系统/技术开发搭建私有部署

本系统是基于短视频领域的新一代系统&#xff0c;旨在提供一个高效、全面的短视频管理与分发平台。系统采用先进的开发算法和技术&#xff0c;实现了智能化视频分类、推荐和用户互动功能。 目录 一、抖音SEO账号矩阵系统的开发和部署遵循以下原则&#xff1a; 二、账号矩阵绑…

【实战项目】c++实现基于reactor的高并发服务器

基于Reactor的高并发服务器&#xff0c;分为反应堆模型&#xff0c;多线程&#xff0c;I/O模型&#xff0c;服务器&#xff0c;Http请求和响应五部分 ​全局 反应堆模型 Channel 描述了文件描述符以及读写事件&#xff0c;以及对应的读写销毁回调函数&#xff0c;对应存储ar…

域名配置HTTPS

一、注册域名 这个可以在各大平台注册&#xff0c;具体看一下就会注册了&#xff0c;自己挑选一个自己喜欢的域名。 步骤一般也就是先实名&#xff0c;实名成功了才能注册域名。 二、办理SSL证书 这里使用的是阿里云的SSL免费证书 1、申请证书 二、填写申请 三、域名绑定生…

golang—面试题大全

目录标题 sliceslice和array的区别slice扩容机制slice是否线程安全slice分配到栈上还是堆上扩容过程中是否重新写入go深拷贝发生在什么情况下&#xff1f;切片的深拷贝是怎么做的copy和左值进行初始化区别slice和map的区别 mapmap介绍map的key的类型map对象如何比较map的底层原…

【MFC】08.MFC消息,自定义消息,常用控件(MFC菜单创建大总结),工具栏,状态栏-笔记

本专栏上几篇文章讲解了MFC几大机制&#xff0c;今天带领大家学习MFC自定义消息以及常用控件&#xff0c;最常用的控件请查看本专栏第一二篇文章&#xff0c;今天这篇文章介绍工具栏&#xff0c;菜单和状态栏&#xff0c;以及菜单创建大总结。 文章目录 MFC消息分类&#xff1…

XUbuntu22.04之快速切换Terminal与Chromium窗口(一百八十九)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 人生格言&#xff1a; 人生…

24届近5年南京工业大学自动化考研院校分析

今天给大家带来的是南京工业大学控制考研分析 满满干货&#xff5e;还不快快点赞收藏 一、南京工业大学 学校简介 南京工业大学&#xff08;Nanjing Tech University&#xff09;&#xff0c;简称“南工”&#xff0c;位于江苏省南京市&#xff0c;由国家国防科技工业局、住…

Java多线程编程:实现并发处理的高效利器

Java多线程编程&#xff1a;实现并发处理的高效利器 作者&#xff1a;Stevedash 发表于&#xff1a;2023年8月13日 20点45分 来源&#xff1a;Java 多线程编程 | 菜鸟教程 (runoob.com) ​ 在计算机领域&#xff0c;多线程编程是一项重要的技术&#xff0c;可以使程序同时执…

Idea 反编译jar包

实际项目中&#xff0c;有时候会需要更改jar包源码来达到业务需求&#xff0c;本文章将介绍一下如何通过Idea来进行jar反编译 1、Idea安装decompiler插件 2、找到decompiler插件文件夹 decompiler插件文件夹路径为&#xff1a;idea安装路径/plugins/java-decompiler/lib 3、…

【Sklearn】基于K邻近算法的数据分类预测(Excel可直接替换数据)

【Sklearn】基于K邻近算法的数据分类预测&#xff08;Excel可直接替换数据&#xff09; 1.模型原理模型原理&#xff1a;数学模型&#xff1a; 2.模型参数3.文件结构4.Excel数据5.下载地址6.完整代码7.运行结果 1.模型原理 K最近邻&#xff08;K-Nearest Neighbors&#xff0c…

搭建网站并内网穿透实现公网访问本地SQL Server数据库【无公网IP内网穿透】

文章目录 前言1. 安装网站运行和发布必备软件2. 安装PHPStudy3. 安装wordpress4. 进入wordpress安装程序&#xff0c;进行网页编辑和设置5. 安装URL插件6. 安装Cpolar7. 创建自己的数据隧道 前言 在普通电脑用户看来&#xff0c;建立自己的网站总是一件高大上的事情&#xff0…

软件测试四年,总结下功能测试用例设计思路

我们为什么要写好一份测试用例呢&#xff1f;测试同学应该都知道测试用例的重要性&#xff0c;测试用例就是我们测试的依据&#xff0c;也是测试过程中不能缺少的测试文档。 一、用例编写规范目的&#xff1a; 1、提高测试用例的可读性&#xff0c;可执行性、合理性。 2、测…

SpringBoot对一个URL通过method(GET、POST、PUT、DELETE)实现增删改查操作

目录 1. rest风格基础2. 开启方法3. 实战练习 1. rest风格基础 我们都知道GET、POST、PUT、DELETE分别对应查、增、改、删除 虽然Postman这些工具可以直接发送GET、POST、PUT、DELETE请求。但是RequestMapping并不支持PUT和DELETE请求操作。需要我们手动开启 2. 开启方法 P…

CSS 盒模型是什么?它包含哪些属性?标准盒模型/怪异盒模型

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 盒模型⭐ 标准盒模型⭐ 怪异盒模型⭐ 写在最后 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 记得点击上方或者右侧链接订阅本专栏哦 几何带你启航前端之旅 欢迎来到前端入门之旅&#xff01;这个专栏是为那些对Web开发感…

微服务Eureka注册中心

目录 一、Eureka的结构和作用 二、搭建eureka-server 三、服务注册 四、服务发现 假如我们的服务提供者user-service部署了多个实例&#xff0c;如图&#xff1a; 存在的问题&#xff1a; order-service在发起远程调用的时候&#xff0c;该如何得知user-service实例的ip地址…

关于APP备案、小程序备案的问题,如何备案?

近日&#xff0c;工信部发布了关于开展移动互联网应用程序备案工作的通知。为落实相关法律法规要求&#xff0c;促进互联网行业规范健康发展&#xff0c;进一步做好移动互联网信息服务管理&#xff0c;现组织开展移动互联网应用程序&#xff08;以下简称 APP&#xff09;备案工…