[足式机器人]Part3机构运动微分几何学分析与综合Ch03-1 空间约束曲线与约束曲面微分几何学——【读书笔记】

本文仅供学习使用
本文参考:
《机构运动微分几何学分析与综合》-王德伦、汪伟
《微分几何》吴大任

Ch01-4 平面运动微分几何学

  • 3.1 空间曲线微分几何学概述
    • 3.1.1 矢量表示
    • 3.1.2 Frenet标架


连杆机构中的连杆与连架杆构成运动副,该运动副元素的特征点特征线机架坐标系中的运动轨迹曲线或曲面称为约束曲线约束曲面,是联系刚体运动与机构运动综合的桥梁,其几何性质是机构运动综合的理论基础,既是曲线与曲面的几何学研究内容,也是连杆机构运动几何学分析与综合的课题。然而,研究曲线与曲面的几何学,微分几何学方法无疑是自然而然的选择,将其与机构运动学结合,形成以点与线的运动方式研究约束曲线与曲面几何性质,为机构运动几何学分析与综合提供理论依据。
为方便阅读后续内容,在第3.1和第3.2节简单概述微分几何学基本知识;采用微分几何量方法研究连杆机构中典型而又重要的约束曲线与约束曲面,称为空间约束曲线与约束曲面微分几何学

3.1 空间曲线微分几何学概述

3.1.1 矢量表示

在直角坐标中表达一条空间曲线 Γ \Gamma Γ时,有:
{ x = x ( t ) y = y ( t ) z = z ( t ) \left\{ \begin{matrix} x=x(t) \\ y=y(t) \\ z=z(t) \\ \end{matrix} \right. x=x(t)y=y(t)z=z(t)
式中, t t t为曲线的参数,若置换自变量或者消去参数 t t t,则可写成:
{ y = y ( x ) z = z ( x ) \left\{ \begin{matrix} y=y(x) \\ z=z(x) \\ \end{matrix} \right. {y=y(x)z=z(x)
或者写成隐函数形式:
{ F 1 ( x , y , z ) = 0 F 2 ( x , y , z ) = 0 \left\{ \begin{matrix} {{F}_{1}}(x,y,z)=0 \\ {{F}_{2}}(x,y,z)=0 \\ \end{matrix} \right. {F1(x,y,z)=0F2(x,y,z)=0
若将上述 x , y , z x,y,z x,y,z置于空间固定坐标系 { O : i , j , k } \{O:i,j,k\} {O:i,j,k}中,则曲线 Γ \Gamma Γ以参数 t t t表示的矢量方程为:
Γ : R = x ( t ) i + y ( t ) j + z ( t ) k \Gamma :R=x(t)i+y(t)j+z(t)k Γ:R=x(t)i+y(t)j+z(t)k
可以将其简化为:
R = R ( t ) R=R(t) R=R(t)
式(3.4)式(3.5)为空间曲线 Γ \Gamma Γ的矢量表达式, t t t为曲线 Γ \Gamma Γ的一般参数。在 第1章平面曲线的微分几何学 中引入了圆矢量函数用来描述曲线的矢量方程,使得形式简洁并便于计算。因此对于空间曲线 Γ \Gamma Γ的矢量方程式(3.4),可以选择任意两个坐标轴上的分量用圆矢量函数进行描述。例如,将曲线 Γ \Gamma Γ上任意点的矢径在坐标平面 O − i j O-ij Oij上的投影矢量用圆矢量函数描述,如下图所示。
在这里插入图片描述

则其矢量方程可以写出另一种形式:
Γ : R = r ( φ ) e I ( φ ) + z ( φ ) k \Gamma :R=r(\varphi ){{e}_{I(\varphi )}}+z(\varphi )k Γ:R=r(φ)eI(φ)+z(φ)k
对于空间曲线 Γ \Gamma Γ,弧长参数 s s s为其自然参数,且与一般参数 t t t的关系为:
s = ∫ t a t b ∣ d R d t ∣ d t , d s = ∣ d R ∣ = ( d x d t ) 2 + ( d y d t ) 2 + ( d z d t ) 2 d t s=\int_{{{t}_{a}}}^{{{t}_{b}}}{\left| \frac{dR}{dt} \right|dt,ds=\left| dR \right|}=\sqrt{{{(\frac{dx}{dt})}^{2}}+{{(\frac{dy}{dt})}^{2}}+{{(\frac{dz}{dt})}^{2}}}dt s=tatb dtdR dt,ds=dR=(dtdx)2+(dtdy)2+(dtdz)2 dt

空间曲线 Γ \Gamma Γ的矢量方程用弧长参数 s s s表示为: Γ : R = R ( s ) , s a ≤ s ≤ s b \Gamma :R=R(s),{{s}_{a}}\le s\le {{s}_{b}} Γ:R=R(s),sassb

:书中为 Γ : R = R ( s ) , s a ≤ a ≤ s b \Gamma :R=R(s),{{s}_{a}}\le a\le {{s}_{b}} Γ:R=R(s),saasb

【例3-1】 球面曲线如下图所示:
在这里插入图片描述
对于球面曲线 Γ \Gamma Γ,习惯于将直角坐标系 { O : i , j , k } \{O:i,j,k\} {O:i,j,k}原点置于球心,则用直角坐标表示为:
{ x = x ( t ) , y = y ( t ) , z = z ( t ) x 2 + y 2 + z 2 = R 2 \left\{ \begin{matrix} x=x(t),y=y(t),z=z(t) \\ {{x}^{2}}+{{y}^{2}}+{{z}^{2}}={{R}^{2}} \\ \end{matrix} \right. {x=x(t),y=y(t),z=z(t)x2+y2+z2=R2
式中, R R R为球面半径, t t t为球面曲线的参数,若置换自变量或者消去参数 t t t,可写成:
{ z = z ( x , y ) x 2 + y 2 + z 2 = R 2 \left\{ \begin{matrix} z=z(x,y) \\ {{x}^{2}}+{{y}^{2}}+{{z}^{2}}={{R}^{2}} \\ \end{matrix} \right. {z=z(x,y)x2+y2+z2=R2
由于球面曲线上的点始终分布在一球面上,因此往往用球面坐标表示曲线为:
δ = δ ( t ) , φ = φ ( t ) , r = R \delta =\delta (t),\varphi =\varphi (t),r=R δ=δ(t),φ=φ(t),r=R
式中, δ \delta δ是由原点0到曲线上点 P P P的有向线段 O P OP OP k k k的夹角; φ \varphi φ O P OP OP O − i j O-ij Oij面上的投影与i的夹角, δ \delta δ φ \varphi φ的取值范围分别为 [ 0 , π ] [0,\pi ] [0,π] [ 0 , 2 π ] [0,2\pi ] [0,2π]。点 P P P在坐标系 { O : i , j , k } \{O:i,j,k\} {O:i,j,k}中的球面坐标与直角坐标之间具有如下转换关系
x = R sin ⁡ δ cos ⁡ φ , y = R sin ⁡ δ sin ⁡ φ , z = R cos ⁡ δ x=R\sin \delta \cos \varphi ,y=R\sin \delta \sin \varphi ,z=R\cos \delta x=Rsinδcosφ,y=Rsinδsinφ,z=Rcosδ
将上述 x , y , z x,y,z x,y,z置于坐标系 { O : i , j , k } \{O:i,j,k\} {O:i,j,k}中,则球面曲线以参数 t t t表示的矢量方程为:
Γ : R = R ( t ) = x ( t ) i + y ( t ) j + z ( t ) k \Gamma :R=R(t)=x(t)i+y(t)j+z(t)k Γ:R=R(t)=x(t)i+y(t)j+z(t)k
若通过圆矢量函数表示球面曲线的矢量方程,则为:
R = R sin ⁡ δ ( φ ) e I ( φ ) + R cos ⁡ δ ( φ ) k R=R\sin \delta (\varphi ){{e}_{I(\varphi )}}+R\cos \delta (\varphi )k R=Rsinδ(φ)eI(φ)+Rcosδ(φ)k
比较式(E3-1.1)、式(E3-1.4)与式(E3-1.6)可知,采用矢量表示的球面曲线比其他方式表达要简单的多。

【例3-2】 圆柱面曲线如下图所示:
在这里插入图片描述
圆柱面曲线在直角坐标系 { O : i , j , k } \{O:i,j,k\} {O:i,j,k}中的方程为:
{ x = r 0 cos ⁡ φ y = r 0 sin ⁡ φ z = z ( φ ) \left\{ \begin{matrix} x={{r}_{0}}\cos \varphi \\ y={{r}_{0}}\sin \varphi \\ z=z(\varphi ) \\ \end{matrix} \right. x=r0cosφy=r0sinφz=z(φ)
式中, r 0 {{r}_{0}} r0为圆柱面半径。若通过圆矢量函数表示圆柱面曲线的矢量方程,则为:
R = r 0 e I ( φ ) + z ( φ ) k R={{r}_{0}}{{e}_{I(\varphi )}}+z(\varphi )k R=r0eI(φ)+z(φ)k

3.1.2 Frenet标架

空间曲线 Γ ⃗ : R ⃗ = R ⃗ ( s ) \vec{\varGamma}:\vec{R}=\vec{R}\left( s \right) Γ :R =R (s) 在任意点 P P P处有两个无限接近位置的点连线组成切线,其单位切矢 α ⃗ ( s ) = d R ⃗ ( s ) d s \vec{\alpha}\left( s \right) =\frac{\mathrm{d}\vec{R}\left( s \right)}{\mathrm{d}s} α (s)=dsdR (s)始终指向曲线弧长增加的方向,将切矢 α ⃗ ( s ) \vec{\alpha}\left( s \right) α (s) 对弧长参数求导,可得:

d α ⃗ ( s ) d s = k ( s ) β ⃗ ( s ) \frac{\mathrm{d}\vec{\alpha}\left( s \right)}{\mathrm{d}s}=k\left( s \right) \vec{\beta}\left( s \right) dsdα (s)=k(s)β (s)

其中, k ( s ) k\left( s \right) k(s) 称为曲线 Γ ⃗ \vec{\varGamma} Γ 在点 P P P 处的曲率,即三个无限接近位置点构成空间曲线在该点处的密切平面曲率是空间曲线在密切平面内的弯曲程度,体现了曲线的切矢的倾斜角对弧长参数的变化率。与平面曲线曲率不同,空间曲线的曲率非负 β ⃗ ( s ) \vec{\beta}\left( s \right) β (s) 称为曲线 Γ ⃗ \vec{\varGamma} Γ 在点 P P P 处的主法矢,指向了曲线在该点的曲率中心。当 k ( s ) ≠ 0 k\left( s \right) \ne 0 k(s)=0 时,其倒数 ρ ( s ) = 1 / k ( s ) \rho \left( s \right) =1/k\left( s \right) ρ(s)=1/k(s) 称为曲线 Γ ⃗ \vec{\varGamma} Γ 曲率半径,则曲线 Γ ⃗ \vec{\varGamma} Γ 曲率中心 C C C的矢量为:

R ⃗ C = R ⃗ P + ρ ⋅ β ⃗ \vec{R}_{\mathrm{C}}=\vec{R}_{\mathrm{P}}+\rho \cdot \vec{\beta} R C=R P+ρβ

由空间曲线 Γ ⃗ \vec{\varGamma} Γ 在点 P P P 处的切矢 α ⃗ ( s ) \vec{\alpha}\left( s \right) α (s)主法矢 β ⃗ ( s ) \vec{\beta}\left( s \right) β (s) 可以构建矢量 γ ⃗ ( s ) = α ⃗ ( s ) × β ⃗ ( s ) \vec{\gamma}\left( s \right) =\vec{\alpha}\left( s \right) \times \vec{\beta}\left( s \right) γ (s)=α (s)×β (s) ,称之为曲线的副法矢,从而在空间曲线 Γ ⃗ \vec{\varGamma} Γ 上构造了单位右手系正交标架 { R ⃗ ( s ) ; α ⃗ ( s ) , β ⃗ ( s ) , γ ⃗ ( s ) } \left\{ \vec{R}\left( s \right) ;\vec{\alpha}\left( s \right) ,\vec{\beta}\left( s \right) ,\vec{\gamma}\left( s \right) \right\} {R (s);α (s),β (s),γ (s)} ,称为曲线 Γ ⃗ \vec{\varGamma} Γ 在点 P P PFrenet标架

在这里插入图片描述
对于空间曲线 Γ ⃗ \vec{\varGamma} Γ P P P 点的Frenet标架 { R ⃗ ( s ) ; α ⃗ ( s ) , β ⃗ ( s ) , γ ⃗ ( s ) } \left\{ \vec{R}\left( s \right) ;\vec{\alpha}\left( s \right) ,\vec{\beta}\left( s \right) ,\vec{\gamma}\left( s \right) \right\} {R (s);α (s),β (s),γ (s)} ,其中标矢 α ⃗ ( s ) \vec{\alpha}\left( s \right) α (s) β ⃗ ( s ) \vec{\beta}\left( s \right) β (s) 确定了密切平面 β ⃗ ( s ) \vec{\beta}\left( s \right) β (s) γ ⃗ ( s ) \vec{\gamma}\left( s \right) γ (s) 确定的平面称为法平面,而 α ⃗ ( s ) \vec{\alpha}\left( s \right) α (s) γ ⃗ ( s ) \vec{\gamma}\left( s \right) γ (s) 确定的平面称为从切平面。可见Frenet标架由三个同空间曲线紧密联系的向量所组成,其微分运算公式为:

{ d R ⃗ ( s ) d s = α ⃗ ( s ) d α ⃗ ( s ) d s = k ( s ) β ⃗ ( s ) d β ⃗ ( s ) d s = − k ( s ) α ⃗ ( s ) + τ ( s ) γ ⃗ ( s ) d γ ⃗ ( s ) d s = − τ ( s ) β ⃗ ( s ) \begin{cases} \begin{array}{c} \frac{\mathrm{d}\vec{R}\left( s \right)}{\mathrm{d}s}=\vec{\alpha}\left( s \right)\\ \frac{\mathrm{d}\vec{\alpha}\left( s \right)}{\mathrm{d}s}=k\left( s \right) \vec{\beta}\left( s \right)\\ \end{array}\\ \begin{array}{c} \frac{\mathrm{d}\vec{\beta}\left( s \right)}{\mathrm{d}s}=-k\left( s \right) \vec{\alpha}\left( s \right) +\tau \left( s \right) \vec{\gamma}\left( s \right)\\ \frac{\mathrm{d}\vec{\gamma}\left( s \right)}{\mathrm{d}s}=-\tau \left( s \right) \vec{\beta}\left( s \right)\\ \end{array}\\ \end{cases} dsdR (s)=α (s)dsdα (s)=k(s)β (s)dsdβ (s)=k(s)α (s)+τ(s)γ (s)dsdγ (s)=τ(s)β (s)

其中, τ ( s ) \tau \left( s \right) τ(s) 称为空间曲线 Γ ⃗ \vec{\varGamma} Γ 在点 P P P 处的挠率,它衡量了曲线在点 $P$ 的(密切平面)副法矢 $\vec{\gamma}\left( s \right)$ 倾斜角对弧长的变化率,从而描述了曲线在该点偏离密切平面的程度。上式也称为空间曲线的Frenet公式

由Frenet公式可以得到空间曲线 Γ ⃗ \vec{\varGamma} Γ 曲率 k k k 和挠率 τ \tau τ 的表达式为:

k = ∣ d 2 R ⃗ ( s ) d s 2 ∣ , τ = ( d R ⃗ ( s ) d s , d 2 R ⃗ ( s ) d s 2 , d 3 R ⃗ ( s ) d s 3 ) / ∣ d 2 R ⃗ ( s ) d s 2 ∣ 2 k=\left| \frac{\mathrm{d}^2\vec{R}\left( s \right)}{\mathrm{d}s^2} \right|,\tau =\left( \frac{\mathrm{d}\vec{R}\left( s \right)}{\mathrm{d}s},\frac{\mathrm{d}^2\vec{R}\left( s \right)}{\mathrm{d}s^2},\frac{\mathrm{d}^3\vec{R}\left( s \right)}{\mathrm{d}s^3} \right) /\left| \frac{\mathrm{d}^2\vec{R}\left( s \right)}{\mathrm{d}s^2} \right|^2 k= ds2d2R (s) ,τ=(dsdR (s),ds2d2R (s),ds3d3R (s))/ ds2d2R (s) 2

若空间曲线 Γ ⃗ \vec{\varGamma} Γ 是以一般参数 t t t 进行描述的,则其曲率 k ( s ) k(s) k(s) 和挠率 τ ( s ) \tau \left( s \right) τ(s) 的表达式为:
k = ∣ d R ⃗ d t × d 2 R ⃗ d t 2 ∣ / ∣ d R ⃗ d t ∣ 3 , τ = ( d R ⃗ d t , d 2 R ⃗ d t 2 , d 3 R ⃗ d t 3 ) / ( d R ⃗ d t × d 2 R ⃗ d t 2 ) 2 k=\left| \frac{\mathrm{d}\vec{R}}{\mathrm{d}t}\times \frac{\mathrm{d}^2\vec{R}}{\mathrm{d}t^2} \right|/\left| \frac{\mathrm{d}\vec{R}}{\mathrm{d}t} \right|^3,\tau =\left( \frac{\mathrm{d}\vec{R}}{\mathrm{d}t},\frac{\mathrm{d}^2\vec{R}}{\mathrm{d}t^2},\frac{\mathrm{d}^3\vec{R}}{\mathrm{d}t^3} \right) /\left( \frac{\mathrm{d}\vec{R}}{\mathrm{d}t}\times \frac{\mathrm{d}^2\vec{R}}{\mathrm{d}t^2} \right) ^2 k= dtdR ×dt2d2R / dtdR 3,τ=(dtdR ,dt2d2R ,dt3d3R )/(dtdR ×dt2d2R )2
对于空间曲线来说,曲率 k ( s ) k(s) k(s) 和挠率 τ ( s ) \tau \left( s \right) τ(s) 不依赖于坐标系的选定。是空间曲线的不变量,能够唯一地确定空间曲线,可以将 k = k ( s ) , τ = τ ( s ) k=k\left( s \right) ,\tau =\tau \left( s \right) k=k(s),τ=τ(s) 称为空间曲线的自然方程。于是有:

定理3.1:在区间 0 ⩽ s ⩽ l 0\leqslant s\leqslant l 0sl上任意给定连续可微函数 $k\left( s \right) >0 $ 和连续函数 τ ( s ) \tau \left( s \right) τ(s) 以及初始右手系正交标架 { R ⃗ 0 ; α ⃗ 0 , β ⃗ 0 , γ ⃗ 0 } \left\{ \vec{R}_0;\vec{\alpha}_0,\vec{\beta}_0,\vec{\gamma}_0 \right\} {R 0;α 0,β 0,γ 0} ,则一定有且仅有一条以 s s s 为弧长、以 k ( s ) k\left( s \right) k(s) 为曲率、 τ ( s ) \tau \left( s \right) τ(s) 为挠率的空间有向曲线。

建立了空间曲线 Γ ⃗ \vec{\varGamma} Γ P P P 点处的Frenet标架 { R ⃗ ( s ) ; α ⃗ ( s ) , β ⃗ ( s ) , γ ⃗ ( s ) } \left\{ \vec{R}\left( s \right) ;\vec{\alpha}\left( s \right) ,\vec{\beta}\left( s \right) ,\vec{\gamma}\left( s \right) \right\} {R (s);α (s),β (s),γ (s)} ,可将曲线 Γ ⃗ \vec{\varGamma} Γ 在点 P P P的邻域内按照泰勒公式展开。假定曲线 Γ ⃗ \vec{\varGamma} Γ 在点 P P P 处的弧长为 s s s,则有:

R ⃗ ( s + Δ s ) = R ⃗ ( s ) + d R ⃗ ( s ) d s Δ s + 1 2 ! d 2 R ⃗ ( s ) d s 2 ( Δ s ) 2 + ⋯ + 1 n ! d n R ⃗ ( s ) d s n ( Δ s ) n + ε n ( s , Δ s ) ( Δ s ) n \vec{R}\left( s+\varDelta s \right) =\vec{R}\left( s \right) +\frac{\mathrm{d}\vec{R}\left( s \right)}{\mathrm{d}s}\varDelta s+\frac{1}{2!}\frac{\mathrm{d}^2\vec{R}\left( s \right)}{\mathrm{d}s^2}\left( \varDelta s \right) ^2+\cdots +\frac{1}{n!}\frac{\mathrm{d}^n\vec{R}\left( s \right)}{\mathrm{d}s^n}\left( \varDelta s \right) ^n+\varepsilon _{\mathrm{n}}\left( s,\varDelta s \right) \left( \varDelta s \right) ^n R (s+Δs)=R (s)+dsdR (s)Δs+2!1ds2d2R (s)(Δs)2++n!1dsndnR (s)(Δs)n+εn(s,Δs)(Δs)n

式中, lim ⁡ Δ s → 0 ε n ( s , Δ s ) = 0 , d R ⃗ d s = α ⃗ , d 2 R ⃗ d s 2 = k β ⃗ , d 3 R ⃗ d s 3 = − k 2 α ⃗ + d k d s β ⃗ + k τ γ ⃗ \lim_{\varDelta s\rightarrow 0} \varepsilon _{\mathrm{n}}\left( s,\varDelta s \right) =0,\frac{\mathrm{d}\vec{R}}{\mathrm{d}s}=\vec{\alpha},\frac{\mathrm{d}^2\vec{R}}{\mathrm{d}s^2}=k\vec{\beta},\frac{\mathrm{d}^3\vec{R}}{\mathrm{d}s^3}=-k^2\vec{\alpha}+\frac{\mathrm{d}k}{\mathrm{d}s}\vec{\beta}+k\tau \vec{\gamma} limΔs0εn(s,Δs)=0,dsdR =α ,ds2d2R =kβ ,ds3d3R =k2α +dsdkβ +kτγ ,并以此可以得到矢径 R ⃗ ( s ) \vec{R}\left( s \right) R (s) 关于弧长参数的各阶导数。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/90334.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Stable Diffusion】雨天、湿身

一、Models 1.1、Wet Clothes (Clothing Style) [LoHA] WECL SEE-THROUGH WET WET HAIR BIKINI OR SWIMSUIT UNDER CLOTHES NO BRA BRA VISIBLE THROUGH CLOTHES MISC SHIRTS MISC CLOTHES1.2、Rain 雨 Multiply Style rain style1.3、Wet T-Shirt LORA <lora:wetshirt:…

5.1 web浏览安全

数据参考&#xff1a;CISP官方 目录 Web应用基础浏览器所面临的安全威胁养成良好的Web浏览安全意识如何安全使用浏览器 一、Web应用基础 1、Web应用的基本概念 Web ( World wide Web) 也称为万维网 脱离单机Web应用在互联网上占据了及其重要的地位Web应用的发展&#xf…

最新Kali Linux安装教程:从零开始打造网络安全之旅

Kali Linux&#xff0c;全称为Kali Linux Distribution&#xff0c;是一个操作系统(2013-03-13诞生)&#xff0c;是一款基于Debian的Linux发行版&#xff0c;基于包含了约600个安全工具&#xff0c;省去了繁琐的安装、编译、配置、更新步骤&#xff0c;为所有工具运行提供了一个…

计算机竞赛 python 机器视觉 车牌识别 - opencv 深度学习 机器学习

1 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 基于python 机器视觉 的车牌识别系统 &#x1f947;学长这里给一个题目综合评分(每项满分5分) 难度系数&#xff1a;3分工作量&#xff1a;3分创新点&#xff1a;3分 &#x1f9ff; 更多资…

【量化课程】02_4.数理统计的基本概念

2.4_数理统计的基本概念 数理统计思维导图 更多详细内容见notebook 1.基本概念 总体&#xff1a;研究对象的全体&#xff0c;它是一个随机变量&#xff0c;用 X X X表示。 个体&#xff1a;组成总体的每个基本元素。 简单随机样本&#xff1a;来自总体 X X X的 n n n个相互…

梯度下降介绍

什么是梯度 梯度是微积分中一个很重要的概念&#xff0c;在单变量的函数中&#xff0c;梯度其实就是函数的微分&#xff0c;代表着函数在某个给定点的切线的斜率&#xff1b;在多变量函数中&#xff0c;梯度是一个向量&#xff0c;向量有方向&#xff0c;梯度的方向就指出了函…

809协议nodejs编写笔记(还在更新)

一、总体流程 数据首先通过receiver接受层接收&#xff0c;去掉标识头和标识尾&#xff1b;再进入depacker解包层进行解包&#xff0c;把标识头分解出来并解析&#xff1b;之后发给handler处理层根据不同的消息id选择使用不同的业务逻辑&#xff1b;如果有应答&#xff0c;则通…

陪诊小程序开发|陪诊陪护小程序让看病不再难

陪诊小程序通过与医疗机构的合作&#xff0c;整合了医疗资源&#xff0c;让用户能够更加方便地获得专业医疗服务。用户不再需要面对繁琐的挂号排队&#xff0c;只需通过小程序预约服务&#xff0c;便能够享受到合适的医疗资源。这使得用户的就医过程变得简单高效&#xff0c;并…

CSS中的position属性有哪些值,并分别描述它们的作用。

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ static⭐ relative⭐ absolute⭐ fixed⭐ sticky⭐ 写在最后 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 记得点击上方或者右侧链接订阅本专栏哦 几何带你启航前端之旅 欢迎来到前端入门之旅&#xff01;这个专栏是为那…

Tomcat多实例部署及nginx+tomcat的负载均衡和动静分离

Tomcat多实例部署 安装 jdk、tomcat&#xff08;流程可看之前博客&#xff09; 配置 tomcat 环境变量 [rootlocalhost ~]# vim /etc/profile.d/tomcat.sh#tomcat1 export CATALINA_HOME1/usr/local/tomcat/tomcat1 export CATALINA_BASE1/usr/local/tomcat/tomcat1 export T…

pdf怎么转换成jpg图片?这几个转换方法了解一下

pdf怎么转换成jpg图片&#xff1f;转换PDF文件为JPG图片格式在现代工作中是非常常见的需求&#xff0c;比如将PDF文件中的图表、表格或者图片转换为JPG格式后使用在PPT演示、网页设计等场景中。 【迅捷PDF转换器】是一款非常实用的工具&#xff0c;可以将PDF文件转换成多种不同…

HTML详解连载(5)

HTML详解连载&#xff08;5&#xff09; 专栏链接 [link](http://t.csdn.cn/xF0H3)下面进行专栏介绍 开始喽行高&#xff1a;设置多行文本的间距属性名属性值行高的测量方法 行高-垂直居中技巧 字体族属性名属性值示例扩展 font 复合属性使用场景复合属性示例注意 文本缩进属性…

YOLO v8目标跟踪详细解读(二)

上一篇&#xff0c;结合代码&#xff0c;我们详细的介绍了YOLOV8目标跟踪的Pipeline。大家应该对跟踪的流程有了大致的了解&#xff0c;下面我们将对跟踪中出现的卡尔曼滤波进行解读。 1.卡尔曼滤波器介绍 卡尔曼滤波&#xff08;kalman Filtering&#xff09;是一种利用线性…

Python学习 -- 常用函数与实例详解

在Python编程中&#xff0c;数据转换是一项关键任务&#xff0c;它允许我们在不同数据类型之间自由流动&#xff0c;从而提高代码的灵活性和效率。本篇博客将深入探讨常用的数据转换函数&#xff0c;并通过实际案例为你展示如何巧妙地在不同数据类型之间转换。 数据类型转换函…

分布式监控平台——Zabbix

市场上常用的监控软件&#xff1a; 传统运维&#xff1a;zabbix、 Nagios 一、zabbix概述 作为一个运维&#xff0c;需要会使用监控系统查看服务器状态以及网站流量指标&#xff0c;利用监控系统的数据去了解上线发布的结果&#xff0c;和网站的健康状态。 利用一个优秀的监…

【数学建模】--因子分析模型

因子分析有斯皮尔曼在1904年首次提出&#xff0c;其在某种程度上可以被看成时主成分分析的推广和扩展。 因子分析法通过研究变量间的相关稀疏矩阵&#xff0c;把这些变量间错综复杂的关系归结成少数几个综合因子&#xff0c;由于归结出的因子个数少于原始变量的个数&#xff0c…

【第三讲-三维空间刚体运动】

旋转矩阵 点、向量、坐标系 坐标系分为左左手系和右手系 下面讨论有关向量的运算&#xff1a; 内积 外积&#xff1a; 外积的结果是一个向量&#xff0c;方向垂直于这两个向量&#xff0c;大小为

sift-1M数据集的读取及ES插入数据

sift是检查ann近邻召回率的标准数据集,ann可以选择faiss,milvus等库或者方法;sift数据分为query和base,以及label(groundtruth)数据。本文采用sift-1M进行解读,且看如下: 1、sift-1m数据集 官方链接地址:Evaluation of Approximate nearest neighbors: large datase…

brew+nginx配置静态文件服务器

背景 一下子闲下来了&#xff0c;了解的我的人都知道我闲不下来。于是&#xff0c;我在思考COS之后&#xff0c;决定自己整一个本地的OSS&#xff0c;实现静态文件的访问。那么&#xff0c;首屈一指的就是我很熟的nginx。也算是个小复习吧&#xff0c;复习一下nginx代理静态文…

通过网关访问微服务,一次正常,一次不正常 (nacos配置的永久实例却未启动导致)

微服务直接访问没问题&#xff0c;通过网关访问&#xff0c;就一次正常访问&#xff0c;一次401错误&#xff0c;交替正常和出错 负载均衡试了 路由配置检查了 最后发现nacos下竟然有2个order服务实例&#xff0c;我明明只开启了一个呀 原来之前的8080端口微服务还残留&…