利用OpenCV光流算法实现视频特征点跟踪

光流简介

        光流(optical flow)是运动物体在观察成像平面上的像素运动的瞬时速度。光流法是利用图像序列中像素在时间域上的变化以及相邻帧之间的相关性来找到上一帧跟当前帧之间存在的对应关系,从而计算出相邻帧之间物体的运动信息的一种方法。通常将二维图像平面特定坐标点上的灰度瞬时变化率定义为光流矢量。光流是由物体或相机的运动引起的图像物体在连续两帧之间的明显运动的模式。它是 2D 矢量场,其中每个矢量是一个位移矢量,显示点从第一帧到第二帧的移动。

        以下图片显示了计算出的光流示意图,颜色表示光流方向,颜色饱和度表示大小:

 

        参考博文:

计算机视觉大型攻略 —— 光流(1)基本原理和经典算法_光流算法_linusyue的博客-CSDN博客

光流法(optical flow)简介_Fm镄的博客-CSDN博客

opencv光流实现

        光流追踪的前提是:

1. 对象的像素强度在连续帧之间不会改变;

2. 相邻像素具有相似的运动。

 OpenCV提供了两种算法计算光流:

cv::calcOpticalFlowPyrLK()---稀疏光流: 通过 Lucas-Kanade 方法计算稀疏特征集的光流(使用 Shi-Tomasi 算法检测到的角点

cv::calcOpticalFlowFarneback--密集光流: 通过 Gunner Farneback 来寻找密集光流。它计算帧中所有点的光流。

p1, st, err = cv2.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, winSize=(15, 15), maxLevel=2, criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))

- old_gray: 上一帧单通道灰度图
- frame_gray: 下一帧单通道灰度图
- prePts:p0上一帧坐标pts
- nextPts: None
- winSize: 每个金字塔级别上搜索窗口的大小
- maxLevel: 最大金字塔层数
- criteria:指定迭代搜索算法的终止条件,在指定的最大迭代次数 10 之后或搜索窗口移动小于 0.03

flow = cv2.calcOpticalFlowFarneback(prvs, next, None, 0.5, 3, 15, 3, 5, 1.2, 0)

- prvs: 上一帧单通道灰度图
- next: 下一帧单通道灰度图
- flow: 流 None
- pyr_scale: 0.5经典金字塔,构建金字塔缩放scale
- level:3 初始图像的金字塔层数
- winsize:3 平均窗口大小,数值越大,算法对图像的鲁棒性越强
- iterations:15 迭代次数
- poly_n:5 像素邻域的参数多边形大小,用于在每个像素中找到多项式展开式;较大的值意味着图像将使用更平滑的曲面进行近似,从而产生更高的分辨率、鲁棒算法和更模糊的运动场;通常多边形n=5或7。
- poly_sigma:1.2 高斯标准差,用于平滑导数
- flags: 可以是以下操作标志的组合:OPTFLOW_USE_INITIAL_FLOW:使用输入流作为初始流近似值。OPTFLOW_FARNEBACK_GAUSSIAN: 使用GAUSSIAN过滤器而不是相同尺寸的盒过滤器;

源码实例

稀疏光流追踪

# 光流追踪
# 光流追踪的前提是:1. 对象的像素强度在连续帧之间不会改变;2. 相邻像素具有相似的运动。
# - cv2.goodFeaturesToTrack() 确定要追踪的特征点
# - cv2.calcOpticalFlowPyrLK() 追踪视频中的特征点# 取第一帧,检测其中的一些 Shi-Tomasi 角点,使用 Lucas-Kanade 光流迭代跟踪这些点。
# 对于函数 cv2.calcOpticalFlowPyrLK() 传递前一帧、前一个点和下一帧。它返回下一个点以及一些状态编号,如果找到下一个点,则值为 1,否则为零。
# 然后在下一步中迭代地将这些下一个点作为前一个点传递。# USAGE
# python video_optical_flow.pyimport imutils
import numpy as np
import cv2cap = cv2.VideoCapture('images/slow_traffic_small.mp4')# ShiTomasi角点检测的参数
feature_params = dict(maxCorners=100,qualityLevel=0.3,minDistance=7,blockSize=7)# Lucas Kanada光流检测的参数
lk_params = dict(winSize=(15, 15),maxLevel=2,criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))# 构建随机颜色
color = np.random.randint(0, 255, (100, 3))# 获取第一帧并发现角点
ret, old_frame = cap.read()
old_gray = cv2.cvtColor(old_frame, cv2.COLOR_BGR2GRAY)
p0 = cv2.goodFeaturesToTrack(old_gray, mask=None, **feature_params)# 为绘制光流追踪图,构建一个Mask
mask = np.zeros_like(old_frame)num = 0
while (1):ret, frame = cap.read()if not ret:breakframe_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)# 使用迭代Lucas Kanade方法计算稀疏特征集的光流# - old_gray: 上一帧单通道灰度图# - frame_gray: 下一帧单通道灰度图# - prePts:p0上一帧坐标pts# - nextPts: None# - winSize: 每个金字塔级别上搜索窗口的大小# - maxLevel: 最大金字塔层数# - criteria:指定迭代搜索算法的终止条件,在指定的最大迭代次数criteria.maxCount之后或搜索窗口移动小于criteria.epsilonp1, st, err = cv2.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, **lk_params)# 选择轨迹点good_new = p1[st == 1]good_old = p0[st == 1]# 绘制轨迹for i, (new, old) in enumerate(zip(good_new, good_old)):a, b = new.ravel()c, d = old.ravel()mask = cv2.line(mask, (a, b), (c, d), color[i].tolist(), 2)frame = cv2.circle(frame, (a, b), 5, color[i].tolist(), -1)img = cv2.add(frame, mask)cv2.imshow('frame', img)cv2.imwrite('videoof-imgs/' + str(num) + '.jpg', imutils.resize(img, 500))print(str(num))num = num + 1k = cv2.waitKey(30) & 0xffif k == 27:break# 更新之前的帧和点old_gray = frame_gray.copy()p0 = good_new.reshape(-1, 1, 2)cv2.destroyAllWindows()
cap.release()

改进版稀疏光流追踪

# 优化后的光流追踪—Lucas-Kanade tracker
# (当不见检查下一个关键点的正确程度时,即使图像中的任何特征点消失,光流也有可能找到下一个看起来可能靠近它的点。实际上对于稳健的跟踪,角点应该在特定的时间间隔内检测点。
# 找到特征点后,每 30 帧对光流点的向后检查,只选择好的。)
# Lucas Kanade稀疏光流演示。使用GoodFeatures跟踪用于跟踪初始化和匹配验证的回溯帧之间。
# Lucas-Kanade sparse optical flow demo. Uses goodFeaturesToTrack for track initialization and back-tracking for match verification between frames.# Usage
# pyhton lk_track.py images/slow_traffic_small.mp4
# 按 ESC键退出from __future__ import print_functionimport imutils
import numpy as np
import cv2def draw_str(dst, target, s):x, y = targetcv2.putText(dst, s, (x + 1, y + 1), cv2.FONT_HERSHEY_PLAIN, 1.0, (0, 0, 0), thickness=2, lineType=cv2.LINE_AA)cv2.putText(dst, s, (x, y), cv2.FONT_HERSHEY_PLAIN, 1.0, (255, 255, 255), lineType=cv2.LINE_AA)lk_params = dict(winSize=(15, 15),maxLevel=2,criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))feature_params = dict(maxCorners=500,qualityLevel=0.3,minDistance=7,blockSize=7)class App:def __init__(self, video_src):self.track_len = 10self.detect_interval = 30self.tracks = []self.cam = cv2.VideoCapture(video_src)self.frame_idx = 0def run(self):while True:_ret, frame = self.cam.read()if not _ret:breakframe_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)vis = frame.copy()if len(self.tracks) > 0:img0, img1 = self.prev_gray, frame_grayp0 = np.float32([tr[-1] for tr in self.tracks]).reshape(-1, 1, 2)p1, _st, _err = cv2.calcOpticalFlowPyrLK(img0, img1, p0, None, **lk_params)p0r, _st, _err = cv2.calcOpticalFlowPyrLK(img1, img0, p1, None, **lk_params)d = abs(p0 - p0r).reshape(-1, 2).max(-1)good = d < 1new_tracks = []for tr, (x, y), good_flag in zip(self.tracks, p1.reshape(-1, 2), good):if not good_flag:continuetr.append((x, y))if len(tr) > self.track_len:del tr[0]new_tracks.append(tr)cv2.circle(vis, (x, y), 2, (0, 255, 0), -1)self.tracks = new_trackscv2.polylines(vis, [np.int32(tr) for tr in self.tracks], False, (0, 255, 0))draw_str(vis, (20, 20), 'track count: %d' % len(self.tracks))if self.frame_idx % self.detect_interval == 0:mask = np.zeros_like(frame_gray)mask[:] = 255for x, y in [np.int32(tr[-1]) for tr in self.tracks]:cv2.circle(mask, (x, y), 5, 0, -1)p = cv2.goodFeaturesToTrack(frame_gray, mask=mask, **feature_params)if p is not None:for x, y in np.float32(p).reshape(-1, 2):self.tracks.append([(x, y)])self.prev_gray = frame_graycv2.imshow('lk_track', vis)print(self.frame_idx)cv2.imwrite('videoOof-imgs/' + str(self.frame_idx) + '.jpg', imutils.resize(vis, 500))self.frame_idx += 1ch = cv2.waitKey(1)if ch == 27:breakdef main():import systry:video_src = sys.argv[1]except:video_src = 0App(video_src).run()print('Done')if __name__ == '__main__':print(__doc__)main()cv2.destroyAllWindows()

密集光流追踪

# OpenCV中的密集光流
# Lucas-Kanade 方法计算稀疏特征集的光流(使用 Shi-Tomasi 算法检测到的角点)。
# OpenCV 提供了另一种算法: Gunner Farneback 来寻找密集光流。它计算帧中所有点的光流。
# 通过cv2.calcOpticalFlowFarneback() 将得到一个带有光流向量 (u,v) 的 2 通道阵列。可以找到它们的大小和方向,然后对结果进行颜色编码以实现更好的可视化。
# 在HSV图像中,方向对应于图像的色调,幅度对应于价值平面。import cv2
import imutils
import numpy as npcap = cv2.VideoCapture('images/slow_traffic_small.mp4')ret, frame1 = cap.read()
prvs = cv2.cvtColor(frame1, cv2.COLOR_BGR2GRAY)
hsv = np.zeros_like(frame1)
hsv[..., 1] = 255num = 0
while (1):ret, frame2 = cap.read()if not ret:breaknext = cv2.cvtColor(frame2, cv2.COLOR_BGR2GRAY)# 使用迭代Gunner Farneback 方法计算密集特征的光流# - prvs: 上一帧单通道灰度图# - next: 下一帧单通道灰度图# - flow: 流 None# - pyr_scale: 0.5经典金字塔,构建金字塔缩放scale# - level:3 初始图像的金字塔层数# - winsize:3 平均窗口大小,数值越大,算法对图像的鲁棒性越强# - iterations:15 迭代次数# - poly_n:5 像素邻域的参数多边形大小,用于在每个像素中找到多项式展开式;较大的值意味着图像将使用更平滑的曲面进行近似,从而产生更高的分辨率、鲁棒算法和更模糊的运动场;通常多边形n=5或7。# - poly_sigma:1.2 高斯标准差,用于平滑导数# - flags: 可以是以下操作标志的组合:OPTFLOW_USE_INITIAL_FLOW:使用输入流作为初始流近似值。OPTFLOW_FARNEBACK_GAUSSIAN: 使用GAUSSIAN过滤器而不是相同尺寸的盒过滤器;flow = cv2.calcOpticalFlowFarneback(prvs, next, None, 0.5, 3, 15, 3, 5, 1.2, 0)mag, ang = cv2.cartToPolar(flow[..., 0], flow[..., 1])hsv[..., 0] = ang * 180 / np.pi / 2hsv[..., 2] = cv2.normalize(mag, None, 0, 255, cv2.NORM_MINMAX)rgb = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)cv2.imshow('Origin VS frame2', np.hstack([frame2, rgb]))cv2.imwrite('dof-imgs/' + str(num) + '.jpg', imutils.resize(np.hstack([frame2, rgb]), 600))k = cv2.waitKey(30) & 0xffnum = num + 1if k == 27:breakelif k == ord('s'):cv2.imwrite('dof-imgs/origin VS dense optical flow HSVres' + str(num) + ".jpg",imutils.resize(np.hstack([frame2, rgb]), width=800))prvs = nextcap.release()
cv2.destroyAllWindows()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/92074.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

stack+queue

适配器 介绍 在C的标准模板库&#xff08;STL&#xff09;中&#xff0c;有几种适配器&#xff0c;它们是一些容器或函数对象的包装&#xff0c;提供了不同的接口和功能&#xff0c;用于适应特定的需求 分类 STL中的适配器可以分为两类&#xff1a;容器适配器和迭代器适配器 容…

包管理工具 nvm npm nrm yarn cnpm npx pnpm详解

包管理工具 nvm npm yarn cnpm npx pnpm npm、cnpm、yarn、pnpm、npx、nvm的区别&#xff1a;https://blog.csdn.net/weixin_53791978/article/details/122533843 npm、cnpm、yarn、pnpm、npx、nvm的区别&#xff1a;https://blog.csdn.net/weixin_53791978/article/details/1…

前后端分离------后端创建笔记(10)用户修改

本文章转载于【SpringBootVue】全网最简单但实用的前后端分离项目实战笔记 - 前端_大菜007的博客-CSDN博客 仅用于学习和讨论&#xff0c;如有侵权请联系 源码&#xff1a;https://gitee.com/green_vegetables/x-admin-project.git 素材&#xff1a;https://pan.baidu.com/s/…

Failed to resolve component: v-data-table“. vue3 + vuefity 使用 v-data-table 报错解决

在使用 vue3 vuetify 开发项目的过程中用到了 v-data-table 组件&#xff0c;结果在使用的过程中发现加载失败控制台报错。 [Vue warn]: Failed to resolve component: VDataTable解决方案&#xff1a; import { VDataTable } from vuetify/labs/VDataTable参考文档: https:…

WebStorm修改默认打开的浏览器

有两种方式第一种修改系统默认浏览器 我采用的是下面这种&#xff0c;在webstorm中修改 将浏览器设置为默认的浏览器即可

linux cp -rpf指令

cp -rpf #强行递归复制/etc目录到/mist目录中&#xff0c;并保持源目录的权限等信息不变。 有点类似于打patch&#xff0c;不会改变已有的内容。

无涯教程-Perl - select函数

描述 此函数将输出的默认文件句柄设置为FILEHANDLE,如果未指定文件句柄,则设置由print和write等功能使用的文件句柄。如果未指定FILEHANDLE,则它将返回当前默认文件句柄的名称。 select(RBITS,WBITS,EBITS,TIMEOUT)使用指定的位调用系统功能select()。 select函数设置用于处理…

元宇宙赛道加速破圈 和数软件抓住“元宇宙游戏”发展新风口

当下海外游戏市场仍然具备较大的增长空间。据机构预测&#xff0c;至2025年全球移动游戏市场规模将达1606亿美元&#xff0c;对应2020-2025年复合增长率11&#xff05;。与此同时&#xff0c;随着元宇宙概念持续升温&#xff0c;国内外多家互联网巨头纷纷入场。行业分析平台New…

【Linux】多线程1——线程概念与线程控制

文章目录 1. 线程概念什么是线程Linux中的线程线程的优点线程的缺点线程的独立资源和共享资源 2. 线程控制Linux的pthread库用户级线程 &#x1f4dd; 个人主页 &#xff1a;超人不会飞)&#x1f4d1; 本文收录专栏&#xff1a;《Linux》&#x1f4ad; 如果本文对您有帮助&…

Python中使用隧道爬虫ip提升数据爬取效率

作为专业爬虫程序员&#xff0c;我们经常面临需要爬取大量数据的任务。然而&#xff0c;有些网站可能会对频繁的请求进行限制&#xff0c;这就需要我们使用隧道爬虫ip来绕过这些限制&#xff0c;提高数据爬取效率。本文将分享如何在Python中使用隧道爬虫ip实现API请求与响应的技…

Netty宝典

文章目录 一.NIO1.简介2.缓冲区(Buffer)3.通道(Channel)4.选择器(Selector)5.原理6.SelectionKey7.ServerSocketChannel 和 SocketChannel8.Socket 二.线程模型1.传统阻塞 I/O 服务模型2.Reactor 模式3.单 Reactor 单线程4.单Reactor多线程5.主从 Reactor 多线程6.为什么用Nett…

Unity ARFoundation 配置工程 (Android)

注意&#xff1a; 1、AR Core是Google的产品&#xff0c;因为谷歌制裁华为&#xff0c;所以 有些 华为机可能不支持AR Core的软件&#xff1b; 2、手机在设置里搜索Google Play&#xff0c;看看是否已经安装上了&#xff0c;如果没有装此服务&#xff0c;去商城里搜索Google Pl…

报错解决:matlab机器人工具箱不支持将脚本 DHFactor 作为函数执行

matlab使用机器人工具箱出现报错&#xff1a; 不支持将脚本 DHFactor 作为函数执行: D:\MATLAB\install\toolbox\rvctools\robot\DHFactor.m 解决办法&#xff1a;重新到上图的rvctool重重新安装一下工具箱就好了。 到目录"$机器人工具箱路径$\rvctools" 在matlab命…

如何卖 Click to WhatsApp 广告最有效

2022年&#xff0c;大多数直接面向消费者的品牌都面临相同挑战—— Facebook 和 Instagram 的广告成本大幅增加。Business Insider 报导指出&#xff0c;2021年 Facebook 广告每次点击的平均成本&#xff08;average cost per click&#xff09;达到0.974美元&#xff0c;按年升…

LangChain手记 Question Answer 问答系统

整理并翻译自DeepLearning.AILangChain的官方课程&#xff1a;Question Answer&#xff08;源代码可见&#xff09; 本节介绍使用LangChian构建文档上的问答系统&#xff0c;可以实现给定一个PDF文档&#xff0c;询问关于文档上出现过的某个信息点&#xff0c;LLM可以给出关于该…

直线导轨在视觉检测设备中的应用

随着科技的不断发展&#xff0c;视觉检测设备已经逐渐代替了传统的人工品检&#xff0c;成为了工业生产中的一部分&#xff0c;在五金配件、塑胶件、橡胶件、电子配件等检测工业零部件表面外观缺陷尺寸方面应用&#xff0c;视觉检测设备具有优势。 直线导轨作为视觉检测设备中重…

任我行CRM系统存在 SQL注入漏洞[2023-HW]

任我行CRM系统存在 SQL注入漏洞 一、 产品简介二、 漏洞概述三、 复现环境四、 漏洞复现小龙POC又是一通哈拉少 五、 修复建议 免责声明&#xff1a;请勿利用文章内的相关技术从事非法测试&#xff0c;由于传播、利用此文所提供的信息或者工具而造成的任何直接或者间接的后果及…

macOS CLion 使用 bits/stdc++.h

macOS 下 CLion 使用 bits/stdc.h 头文件 terminal运行 brew install gccCLion里配置 -D CMAKE_CXX_COMPILER/usr/local/bin/g-11

2022年3月全国计算机等级考试真题(二级C语言)

2022年3月全国计算机等级考试真题&#xff08;二级C语言&#xff09; 第1题 下列有关栈论述正确的是&#xff08; &#xff09; A. 栈顶元素最先能被删除 B. 栈顶元素最后才被删除 C. 栈底元素永远不能被删除 D. 以上三种说法都不对 正确答案&#xff1a;A 得 0 / 1 分 第2题…

OpenCV图像处理——轮廓检测

目录 图像的轮廓查找轮廓绘制轮廓 轮廓的特征轮廓面积轮廓周长轮廓近似凸包边界矩形最小外接圆椭圆拟合直线拟合 图像的矩特征矩的概念图像中的矩特征 图像的轮廓 查找轮廓 binary,contours,hierarchycv.findContours(img,mode,method)绘制轮廓 cv.drawContours(img,coutours…