OpenCV-Python中的图像处理-傅里叶变换

OpenCV-Python中的图像处理-傅里叶变换

  • 傅里叶变换
    • Numpy中的傅里叶变换
    • Numpy中的傅里叶逆变换
    • OpenCV中的傅里叶变换
    • OpenCV中的傅里叶逆变换
  • DFT的性能优化
  • 不同滤波算子傅里叶变换对比

傅里叶变换

  • 傅里叶变换经常被用来分析不同滤波器的频率特性。我们可以使用 2D 离散傅里叶变换 (DFT) 分析图像的频域特性。实现 DFT 的一个快速算法被称为快速傅里叶变换( FFT)。
  • 对于一个正弦信号:x (t) = A sin (2πft), 它的频率为 f,如果把这个信号转到它的频域表示,我们会在频率 f 中看到一个峰值。如果我们的信号是由采样产生的离散信号组成,我们会得到类似的频谱图,只不过前面是连续的,现在是离散。你可以把图像想象成沿着两个方向采集的信号。所以对图像同时进行 X 方向和 Y 方向的傅里叶变换,我们就会得到这幅图像的频域表示(频谱图)。
  • 对于一个正弦信号,如果它的幅度变化非常快,我们可以说他是高频信号,如果变化非常慢,我们称之为低频信号。你可以把这种想法应用到图像中,图像那里的幅度变化非常大呢?边界点或者噪声。所以我们说边界和噪声是图像中的高频分量(注意这里的高频是指变化非常快,而非出现的次数多)。如果没有如此大的幅度变化我们称之为低频分量。

Numpy中的傅里叶变换

Numpy 中的 FFT 包可以帮助我们实现快速傅里叶变换。函数 np.fft.fft2() 可以对信号进行频率转换,输出结果是一个复杂的数组。本函数的第一个参数是输入图像,要求是灰度格式。第二个参数是可选的, 决定输出数组的大小。输出数组的大小和输入图像大小一样。如果输出结果比输入图像大,输入图像就需要在进行 FFT 前补0。如果输出结果比输入图像小的话,输入图像就会被切割。
f = np.fft.fft2(img)
现在我们得到了结果,频率为 0 的部分(直流分量)在输出图像的左上角。如果想让它(直流分量)在输出图像的中心,我们还需要将结果沿两个方向平移 N/2 。函数 np.fft.fftshift() 可以帮助我们实现这一步。(这样更容易分析)。进行完频率变换之后,我们就可以构建振幅谱了。
fshift = np.fft.fftshift(f)

import numpy as np
import cv2
from matplotlib import pyplot as pltimg = cv2.imread('./resource/opencv/image/messi5.jpg', cv2.IMREAD_GRAYSCALE)
f = np.fft.fft2(img)
fshift = np.fft.fftshift(f)# 构建振幅图
magnitude_spectrum = 20*np.log(np.abs(fshift))plt.subplot(121), plt.imshow(img, cmap='gray'), plt.title('Input Image')
plt.subplot(122), plt.imshow(magnitude_spectrum, cmap='gray'), plt.title('Magnitude Spectrum')
plt.show()

在这里插入图片描述
我们可以看到输出结果的中心部分更白(亮),这说明低频分量更多。

Numpy中的傅里叶逆变换

  • 对图像进行FFT变换之后得到频域图像数据,然后再做IFFT变换又可以得到原始图像。相关函数:np.fft.ifftshift(),np.fft.ifft2()
    fishift = np.fft.ifftshift(fshift)
    img_ifft = np.fft.ifft2(fishift)
  • 我们可以对频域图像数据进行操作以实现一些图像处理效果,如在频域内将低频分量的值设为0,可以实现对图像的高通滤波处理:
    rows, cols = img.shape
    crow, ccol = int(rows/2) , int(cols/2)
    fshift[crow-30:crow+30, ccol-30:ccol+30] = 0
import numpy as np
import cv2
from matplotlib import pyplot as pltimg = cv2.imread('./resource/opencv/image/messi5.jpg', cv2.IMREAD_GRAYSCALE)# 1.在Numpy内对图像进行傅里叶变换,得到其频域图像
f = np.fft.fft2(img)
fshift = np.fft.fftshift(f)
# 这里是构建振幅图,显示图像频谱
magnitude_spectrum = 20*np.log(np.abs(fshift))# 2.IFFT 将频域图像还原成原始图像,这里只是验证FFT的逆运算
fishift = np.fft.ifftshift(fshift)
img_ifft = np.fft.ifft2(fishift)
img_ifft = np.abs(img_ifft) # 取绝对值,否则不能用imshow()来显示图像# 3.在频域内将低频分量的值设为0,实现高通滤波。
rows, cols = img.shape 
crow, ccol = int(rows/2) , int(cols/2) 
fshift[crow-30:crow+30, ccol-30:ccol+30] = 0 # 4.对高通滤波后的图像频域数据进行逆傅里叶变换,得到高通滤波后图像。
f_ishift = np.fft.ifftshift(fshift)
img_back = np.fft.ifft2(f_ishift)
img_back = np.abs(img_back) # 取绝对值,否则不能用imshow()来显示图像
# 构建高通滤波后的振幅图,显示图像频谱
after_sepctrum = 20*np.log(np.abs(fshift))plt.subplot(231), plt.imshow(img, cmap='gray'), plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(232), plt.imshow(magnitude_spectrum, cmap='gray'), plt.title('Input Image Spectrum'), plt.xticks([]), plt.yticks([])
plt.subplot(233), plt.imshow(img_ifft, cmap='gray'), plt.title('Input IFFT'), plt.xticks([]), plt.yticks([])
plt.subplot(234), plt.imshow(after_sepctrum, cmap='gray'), plt.title('After HPF Spectrum'), plt.xticks([]), plt.yticks([])
plt.subplot(235), plt.imshow(img_back, cmap='gray'), plt.title('Image after HPF'), plt.xticks([]), plt.yticks([])
plt.subplot(236), plt.imshow(img_back), plt.title('Result in JET'), plt.xticks([]), plt.yticks([])
plt.show()

在这里插入图片描述

OpenCV中的傅里叶变换

OpenCV 中相应的函数是 cv2.dft() 和 cv2.idft()。和前面输出的结果一样,但是是双通道的。第一个通道是结果的实数部分,第二个通道是结果的虚数部分。输入图像要首先转换成 np.float32 格式。

import numpy as np
import cv2
from matplotlib import pyplot as pltimg = cv2.imread('./resource/opencv/image/messi5.jpg', cv2.IMREAD_GRAYSCALE)dft = cv2.dft(np.float32(img), flags=cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)magnitude_spectrum = 20*np.log(cv2.magnitude(dft_shift[:,:,0], dft_shift[:,:,1]))plt.subplot(121), plt.imshow(img, cmap='gray'), plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(magnitude_spectrum, cmap='gray'), plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.show()

在这里插入图片描述

OpenCV中的傅里叶逆变换

前面的部分我们实现了一个 HPF(高通滤波)高通滤波其实是一种边界检测操作。现在我们来做 LPF(低通滤波)将高频部分去除。其实就是对图像进行模糊操作。首先我们需要构建一个掩模,与低频区域对应的地方设置为 1, 与高频区域对应的地方设置为 0。

import numpy as np
import cv2
from matplotlib import pyplot as pltimg = cv2.imread('./resource/opencv/image/messi5.jpg', cv2.IMREAD_GRAYSCALE)
# 1.OpenCV中做DFT
dft = cv2.dft(np.float32(img), flags=cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)rows, cols = img.shape
crow, ccol = int(rows/2), int(cols/2)# create a mask first, center square is 1, remaining all zeros
mask = np.zeros((rows, cols, 2), np.uint8)
mask[crow-30:crow+30, ccol-30:ccol+30] = 1# apply mask and inverse DFT
fshift = dft_shift*mask
f_ishift = np.fft.ifftshift(fshift)
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:,:,0], img_back[:,:,1])plt.subplot(121), plt.imshow(img, cmap='gray'), plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(img_back, cmap='gray'), plt.title('Output Image'), plt.xticks([]), plt.yticks([])
plt.show()

在这里插入图片描述

DFT的性能优化

  • 当数组的大小为某些值时 DFT 的性能会更好。当数组的大小是 2 的指数时 DFT 效率最高。当数组的大小是 2, 3, 5 的倍数时效率也会很高。所以如果你想提高代码的运行效率时,你可以修改输入图像的大小(补 0)。对于OpenCV 你必须自己手动补 0。但是 Numpy,你只需要指定 FFT 运算的大小,它会自动补 0。
  • OpenCV 提供了一个函数:cv2.getOptimalDFTSize()来确定最佳大小。它可以同时被 cv2.dft() 和 np.fft.fft2() 使用。
import numpy as np
import cv2img = cv2.imread('./resource/opencv/image/messi5.jpg', cv2.IMREAD_GRAYSCALE)
rows,cols = img.shape
print('原始图像大小:',rows, cols)
nrows = cv2.getOptimalDFTSize(rows)
ncols = cv2.getOptimalDFTSize(cols)
print('DFT最佳大小:',nrows, ncols)

原始图像大小: 342 548
DFT最佳大小: 360 576

import numpy as np
import cv2
from matplotlib import pyplot as pltimg = cv2.imread('./resource/opencv/image/messi5.jpg', cv2.IMREAD_GRAYSCALE)
rows,cols = img.shape
print('原始图像大小:',rows, cols)
nrows = cv2.getOptimalDFTSize(rows)
ncols = cv2.getOptimalDFTSize(cols)
print('DFT最佳大小:',nrows, ncols)# Numpy数组操作,原图扩大到最佳DFT size
nimg = np.zeros((nrows, ncols))
nimg [:rows, :cols] = img# 
right = ncols - cols
bottom = nrows - rows
# just to avoid line breakup in PDF file
mimg = cv2.copyMakeBorder(img, 0, bottom, 0, right, cv2.BORDER_CONSTANT, value=0)plt.subplot(231), plt.imshow(img, cmap='gray')
plt.subplot(232), plt.imshow(nimg, cmap='gray')
plt.subplot(233), plt.imshow(mimg, cmap='gray')
plt.show()

在这里插入图片描述

不同滤波算子傅里叶变换对比

为什么拉普拉斯算子是高通滤波器?为什么 Sobel 是 HPF?等等。对于第一个问题的答案我们以傅里叶变换的形式给出。我们一起来对不同的算子进行傅里叶变换并分析它们:

import numpy as np
import cv2
from matplotlib import pyplot as plt# simple averaging filter whitout scaling parameter
mean_filter = np.ones((3,3))# creating a guassian filter
x = cv2.getGaussianKernel(5, 10)
# x.T 为矩阵转置
gaussian = x*x.T# different edge detecting filters
# scharr in x-direction
scharr = np.array([[-3, 0, 3],[-10, 0, 10],[-3, 0, 3]])# sobel in x direction
sobel_x = np.array([[-1, 0, 1],[-2, 0, 2],[-1, 0, 1]])# sobel in y direction
sobel_y = np.array([[-1, -2, -1], [0, 0, 0], [1, 2, 1]])# laplacian
laplacian = np.array([[0, 1, 0], [1, -4, 1],[0, 1, 0]])filters = [mean_filter, gaussian, laplacian, sobel_x, sobel_y, scharr]
filter_name = ['mean_filter', 'gaussian', 'laplacian', 'sobel_x', 'sobel_y', 'scharr_x']fft_filters = [np.fft.fft2(x) for x in filters]
fft_shift = [np.fft.fftshift(y) for y in fft_filters]
mag_spectrum = [np.log(np.abs(z)+1) for z in fft_shift]for i in range(6):plt.subplot(2,3,i+1), plt.imshow(mag_spectrum[i], cmap='gray')plt.title([filter_name[i]]), plt.xticks([]), plt.yticks([])
plt.show()

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/92125.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Mac RN环境搭建

RN ios android原生环境搭建有时候是真恶心,电脑环境不一样配置也有差异。 我已经安装官网的文档配置了ios环境 执行 npx react-nativelatest init AwesomeProject 报错 然后自己百度查呀执行 gem update --system 说是没有权限,执行失败。因为Mac…

Qt 7. 在自定义类TcpClient类中使用信号槽功能

1. 因为只有QObject类及其子类派生的类才能使用信号和槽机制。 使用信号和槽还必须在类声明的最开始处添加Q_OBJECT宏,在这个程序中,类的声明是自动生成的,已经添加了这个宏。UI类继承自QDialog,QDialog类又继承自QWidget类&…

数据链路层

数据链路层和网络层的对比 如果说网络层实现的是路由的功能,那么数据链路层就是实打实的实现具体的传输。 就像导航,网络层告诉我们下一步该去哪个主机,而数据链路层则是实现去下一个主机的方法。 网络层的IP地址告诉我们目的地在哪里&#x…

如何使用CSS实现一个纯CSS的滚动条样式?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 使用CSS实现自定义滚动条样式⭐ 写在最后 ⭐ 专栏简介 前端入门之旅:探索Web开发的奇妙世界 记得点击上方或者右侧链接订阅本专栏哦 几何带你启航前端之旅 欢迎来到前端入门之旅!这个专栏是为那些对Web开发感兴趣…

每天一道leetcode:797. 所有可能的路径(图论中等深度优先遍历)

今日份题目: 给你一个有 n 个节点的 有向无环图(DAG),请你找出所有从节点 0 到节点 n-1 的路径并输出(不要求按特定顺序) graph[i] 是一个从节点 i 可以访问的所有节点的列表(即从节点 i 到节…

VBA manual

VBA MACRO Debug.Print()设置Macros安全修复乱码打开VBAAlt F11File/Options/Customize Ribbon Debug.Print() How to Use Excel VBA Debug. Print? 设置Macros安全 或者 File /Options 如果还是Block,右键文件属性 修复乱码 Tools / Options Control Pann…

大数据Flink(六十一):Flink流处理程序流程和项目准备

文章目录 Flink流处理程序流程和项目准备 一、Flink流处理程序的一般流程

java.lang.NoClassDefFoundError: org/apache/tez/dag/api/TezConfiguration

错误: java.lang.NoClassDefFoundError: org/apache/tez/dag/api/TezConfigurationat org.apache.hadoop.hive.ql.exec.tez.TezSessionPoolSession$AbstractTriggerValidator.startTriggerValidator(TezSessionPoolSession.java:74)at org.apache.hadoop.hive.ql.e…

day 0815

计算文件有多少行? 2.文件的拷贝

21.0 CSS 介绍

1. CSS层叠样式表 1.1 CSS简介 CSS(层叠样式表): 是一种用于描述网页上元素外观和布局的样式标记语言. 它可以与HTML结合使用, 通过为HTML元素添加样式来改变其外观. CSS使用选择器来选择需要应用样式的元素, 并使用属性-值对来定义这些样式.1.2 CSS版本 CSS有多个版本, 每个…

髋关节 弹响

评估测试 https://www.bilibili.com/video/BV1A44y1j71Y/?spm_id_from333.880.my_history.page.click&vd_source3535bfaa5db8443d107998d15e88dc44 根据此视频整理所得 托马斯测试 第一种情况 如果你难于将膝关节拉到胸前,并感觉前面有骨性的挤压 说明你股…

leetcode 面试题 02.05 链表求和

⭐️ 题目描述 🌟 leetcode链接:面试题 02.05 链表求和 ps: 首先定义一个头尾指针 head 、tail,这里的 tail 是方便我们尾插,每次不需要遍历找尾,由于这些数是反向存在的,所以我们直接加起来若…

分布式图数据库 NebulaGraph v3.6.0 正式发布,强化全文索引能力

本次 v3.6.0 版本,主要强化全文索引能力,以及优化部分场景下的 MATCH 性能。 强化 强化增强全文索引功能,具体 pr 参见:#5567、#5575、#5577、#5580、#5584、#5587 优化 支持使用 MATCH 子句检索 VID 或属性索引时使用变量&am…

概述、搭建Redis服务器、部署LNP+Redis、创建Redis集群、连接集群、集群工作原理

Top NSD DBA DAY09 案例1:搭建redis服务器案例2:常用命令限案例3:部署LNPRedis案例4:创建redis集群 1 案例1:搭建redis服务器 1.1 具体要求如下 在主机redis64运行redis服务修改服务运行参数 ip 地址192.168.88.6…

四张图片道清AI大模型的发展史(1943-2023)

四张图片道清AI大模型的发展史(1943-2023) 现在最火的莫过于GPT了,也就是大规模语言模型(LLM)。“LLM” 是 “Large Language Model”(大语言模型)的简称,通常用来指代具有巨大规模参数和复杂架构的自然语言处理模型,…

从零开始,外贸邮件营销如何做?

邮件营销是外贸企业开发新用户和维系老客户非常有效的方法之一,因其操作方便快捷、成本低廉且精准投放的特性,已成为外贸行业的必备营销手段。但如何才能利用好邮件营销,让邮件营销的作用发挥到最大呢?今天U-Mail李工就跟大家分享…

Python Flask+Echarts+sklearn+MySQL(评论情感分析、用户推荐、BI报表)项目分享

Python FlaskEchartssklearnMySQL(评论情感分析、用户推荐、BI报表)项目分享 项目背景: 随着互联网的快速发展和智能手机的普及,人们越来越倾向于在网上查找餐厅、购物中心、酒店和旅游景点等商户的点评和评分信息,以便做出更好的消费决策。…

vue3+ts使用antv/x6 + 自定义节点

使用 2.x 版本 x6.antv 新官网: 安装 npm install antv/x6 //"antv/x6": "^2.1.6",项目结构 1、初始化画布 index.vue <template><div id"container"></div> </template><script setup langts> import { onM…

数据库概述、部署MySQL服务、必备命令、密码管理、安装图形软件、SELECT语法 、筛选条件

Top NSD DBA DAY01 案例1&#xff1a;构建MySQL服务器案例2&#xff1a;密码管理案例3&#xff1a;安装图形软件案例4&#xff1a;筛选条件 1 案例1&#xff1a;构建MySQL服务器 1.1 问题 在IP地址192.168.88.50主机和192.168.88.51主机上部署mysql服务练习必备命令的使用 …

实习笔记(一)

自定义注解&#xff1a; 自定义注解中有三个元注解Target,Retention,Document /*** 系统日志注解** author Mark sunlightcsgmail.com*/ Target(ElementType.METHOD) Retention(RetentionPolicy.RUNTIME) Documented public interface SysLog {String value() default "…