利用Opencv实现人像迁移

前言: Hello大家好,我是Dream。 今天来学习一下如何使用Opencv实现人像迁移,欢迎大家一起参与探讨交流~

本文目录:

  • 一、实验要求
  • 二、实验环境
  • 三、实验原理及操作
    • 1.照片准备
    • 2.图像增强
    • 3.实现美颜功能
    • 4.背景虚化
    • 5.图像二值化处理
    • 6.人像迁移
  • 四、实验结果
    • 1.原图、空间直方图均衡化后图像
    • 2.美颜后的人物图像与更改后的风景图像
    • 3.人像二值图
    • 4.人像迁移图
  • 五、结果分析
  • 六、附录代码
  • 七、实验报告

一、实验要求

利用Python和Opencv算法,实现下述功能:

  • 从网上下载一张纯色背景前的老人面部照片,并且要求背景颜色与皮肤、衣服的颜色区别较大。
  • 准备一张风景图片。
  • 利用图像增强算法处理人像照片,以提升照片的品质。
  • 利用图像处理算法去除老人面部的皱纹或色斑,实现美颜功能。
  • 利用图像处理算法处理风景图片,使风景图片变得模糊,实现背景虚化。
  • 利用图像处理算法将步骤4得到的人像图像进行二值化处理,人像部分为0,背景部分为1。
  • 利用步骤6得到的二值图像将步骤5得到的风景图像中用于合成人像区域的像素置为黑色后,与步骤4得到的人像图像进行合成,实现人像迁移。

撰写实验报告,将上述处理的原理与处理流程进行介绍;保存上述每一步的结果图像,并附加在实验报告中;最终对处理结果进行分析,并附加程序

二、实验环境

解释器:Python3.9、开发环境:PyCharm

三、实验原理及操作

1.照片准备

老人照片(上)、风景照片(下)
在这里插入图片描述

2.图像增强

图像增强使用自适应直方图均衡化操作。
因为原始图像为RGB彩色图像,直接使用直方图均衡化操作后会使颜色失真,故先将原始图像转化到HSI空间,对其中I通道(亮度)进行直方图均衡化,再转回RGB空间,这就实现了彩色图像的直方图均衡化,图像的亮度直方图会分布的更加均衡。如果在 RGB 彩色空间内完成直方图均衡化的,虽然的确有将原图中的阴暗部分变得明亮起来,但是颜色的失真也是比较严重的。在均衡化过程中不仅改变了亮度,也改变了彩色,产生了不正确的彩色。
在 HSI 彩色空间均衡化方法得到的结果图像效果是比较好的,整个图像都有效的加亮了,而彩色本身(色调)是不变的。这里使用的是自适应直方图均衡化,能够降低图像的全局依赖性,更多的保留图像的局部特征。

3.实现美颜功能

磨皮算法的功能就是消除脸部的斑点、瑕疵或者杂色,使得人物脸部更加细腻,轮廓更加清晰。 在实际的人脸磨皮中,一般还包含不同程度的预处理。我们使用传统的方法先对人脸中的脸部皮肤区域进行提取。基于皮肤的颜色特性,我们将图像转换到HSV色域,然后对逐像素点阈值判断,分离出了人脸面部皮肤像素点集合。在代码运行中,我们先对整张图片进行了双边滤波,然后将双边滤波结果和原图片输入原函数,使用皮肤像素点判断的方法,将原图中皮肤的像素替换成了对应的双边滤波后的像素。使用双边滤波,能够使滤波算法在处理人脸皮肤时,不对其它器官,如嘴唇,眼睛,眉毛等造成影响,同时不会干扰到背景。
注意滑动窗口的大小和双边方差的参数不宜设置的过大,否则会造成磨皮效果模糊或者过于磨皮。 同时设置过小,磨皮效果不明显,我们使用的是参数是:15*3,这样可以很好的实现我们想要的效果。

4.背景虚化

利用图像处理算法中的均值滤波处理风景图片,使风景图片变得模糊,实现背景虚化。然后再利用cv2.resize方法将风景图片尺寸调整为与人像图片一致,便于之后进行人像迁移。

5.图像二值化处理

获取纯色背景的RGB值,遍历整张图片,颜色接近背景颜色的像素点置为1,其余部分置为0。
同时我也想到了第二种方法,就是额外准备一张没有人像的纯色背景的图片,将原始图片与背景图片做减法并取绝对值,背景部分两张图片RGB值相似相减后趋近于0,其余部分不为0。这里注意的是由于设备原因,使用手机拍摄的背景图会因人像的离开而自动补光改变亮度,故在这里额外使用了亮度增强算法,将转化为HSI空间的背景图I通道乘系数1.25,再转回RGB空间,实现亮度补足。相减后将近似于0的像素点置为1,其余部分置为0,实现图片二值化操作。

6.人像迁移

首先将上述二值化图片进行中值滤波处理,去除一些可能存在的噪声点(黑色区域中的白色点或白色区域中的黑色点),然后进行腐蚀操作,去毛刺儿,腐蚀边界,一定的腐蚀膨胀操作使人像更加贴合。将二值化图片中人像部分置为1,其余部分置为0,与原始图片相乘后即可得到背景为黑色,人像部分正常的图片。
将虚化后的风景图片与人像部分为0、背景部分为1的二值图相乘,即可得到人像区域置为黑色的风景图。再将该图与上一步得到的背景为黑、人像不变的图片相加,即可得到人像迁移后的图片。

四、实验结果

1.原图、空间直方图均衡化后图像

图1 原图(左)、I空间直方图均衡化后图像(右)对比图
在这里插入图片描述

2.美颜后的人物图像与更改后的风景图像

图2、图3美颜后的人物图像(左)与更改尺寸并虚化后的风景图像(右)

3.人像二值图

图4、图5 经过图像处理的人像二值图
在这里插入图片描述

4.人像迁移图

图6、图7 人像部分为黑风景图(左)与人像迁移图(右)
在这里插入图片描述

五、结果分析

对亮度空间进行直方图均衡化操作后,人脸部分亮度明显增强,一些特征更加清晰可辨,说明图像增强效果良好。人像图片的二值化处理,但相较于法二,法一只能够对单一纯色背景进行操作,若背景中有噪声点(如白墙上的黑色污渍等)效果就会变差。但对于本次实验而言,我们采用的是方法一,因为我们的背景完全是白色,我们便可以十分准确地得到我们想要的效果。人像迁移的过程中可能存在白边,这时使用腐蚀膨胀操作将人像收缩,可实现消除白边的操作。最后人像迁移效果良好。

六、附录代码

# @Time : 2022/10/31 16:18
# @Author : 是Dream呀
# @File : 图像增强与合成.py
import cv2
import numpy as np# 图片展示函数
def show(name, img):cv2.imshow(name, img)cv2.waitKey(0)cv2.destroyAllWindows()# 1.自适应直方图均衡化进行图像增强
def hist(image):img = image.copy()# 先转换到 HSI 色彩空间,再将处理后的结果转换到 RGB 色彩空间。img = cv2.cvtColor(img, cv2.COLOR_BGR2HLS)I = img[:, :, 1]clahe = cv2.createCLAHE(clipLimit=1)  # 自适应直方图均衡化img[:, :, 1] = clahe.apply(img[:, :, 1])  # 将cv2.createCLAHE()应用到每个通道上。show('Equalization', np.hstack((I, img[:, :, 1])))img = cv2.cvtColor(img, cv2.COLOR_HLS2BGR)return imgIMG = cv2.imread('1.png')
IMG = cv2.resize(IMG, (422,496))
show('Original image', IMG)
IMG_new = hist(IMG)  # 自适应直方图均衡化进行图像增强
show('Contrast', np.hstack((IMG, IMG_new)))
cv2.imwrite('img1.jpg', np.hstack((IMG, IMG_new)))# 2.图像美化
# 双边滤波
dst = cv2.bilateralFilter(IMG_new, 15, 35, 35)
show('Beauty', dst)
cv2.imwrite('img2.jpg', dst)# 3.利用图像处理算法处理风景图片,使风景图片变得模糊,实现背景虚化
test = cv2.imread('2.png')
test = cv2.blur(test, (9, 9))  # 使用均值滤波处理
test = cv2.resize(test, (422,496))  # 将风景图片尺寸调整为与人像图片一致
show('Falsification', test)
cv2.imwrite('img3.jpg', test)# 4.对图像进行二值化处理
img = IMG.copy()
print(len(img))
print(len(img[0]))
print(len(img[1]))
for i in range(len(img)):  # 获取纯色背景的RGB值,遍历整张图片for j in range(len(img[1])):if 255 == IMG[i][j][0] and 255 == IMG[i][j][1] and 255 == IMG[i][j][2]:  # 颜色接近背景颜色的像素点置为1,其余部分置为0img[i][j] = 255else:img[i][j] = 0# 5.人像迁移
# 中值滤波处理
img = cv2.medianBlur(img, 3)
# 先进行腐蚀操作,再做膨胀操作
kernel = np.ones((3, 3), np.uint8)  # 腐蚀操作,去毛刺儿,腐蚀边界
img = cv2.dilate(img, kernel, iterations=1)
show('Handle', img)
cv2.imwrite('img4.jpg', img)img_t = np.where(img == 0, 1, 0)  # 人像部分置为1,其余部分置为0
img = np.uint8(img_t * IMG_new)  # 与原始图片相乘
show('Opposite Handle', img)
cv2.imwrite('img5.jpg', img)  # 背景为黑、人像不变的图片# 像素值0和1交换 等价于img_t = np.where(img_t == 0, 1, 0)
img_t = np.where(img_t == 1, 2, img_t)
img_t = np.where(img_t == 0, 1, img_t)
img_t = np.where(img_t == 2, 0, img_t)
test = np.uint8(test * img_t)  # 得到人像区域置为黑色的风景图
show('Processed landscape map',test)
cv2.imwrite('img6.jpg',test)# 相加得到迁移后的图像
test = test + img
show('Transfer', test)
cv2.imwrite('img7.jpg', test)

七、实验报告

这里是完整的实验报告–图像处理实战–Opencv实现人像迁移完整实验报告,需要的同学自行取走~

🌲🌲🌲 好啦,这就是今天要分享给大家的全部内容了,我们下期再见!
❤️❤️❤️如果你喜欢的话,就不要吝惜你的一键三连了~
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/95349.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

20W IP网络吸顶喇叭 POE供电吸顶喇叭

SV-29852T 20W IP网络吸顶喇叭产品简介 产品用途: ◆室内豪华型吸顶喇叭一体化网络音频解码扬声器,用于广播分区音频解码、声音还原作用 ◆应用场地如火车站、地铁、教堂、工厂、仓库、公园停车场等;室内使用效果均佳。 产品特点&#xff…

BC136 KiKi去重整数并排序

给定一个整数序列,KiKi想把其中的重复的整数去掉,并将去重后的序列从小到大排序输出。 输入描述 第一行,输入一个整数n,表示序列有n个整数。 第二行输入n个整数(每个整数大于等于1,小于等于1000&#xf…

学校信息管理系统说明文档

目录 0学生信息管理系统体验教程. 4 0.0Student management异地打开方法:. 4 1. 管理系统设计需求分析. 6 1.1 需求介绍. 6 1.2功能需求. 6 1.2.1 学生信息录入. 6 1.2.2 学生信息查询. 6 1.2.3 权限管理. 6 1.2.4 添加学生信息验证. 6 2.功能介绍. 7 2.1…

C++中String的语法及常用接口用法

在C语言中,string是一个标准库类(class),用于处理字符串,它提供了一种更高级、更便捷的字符串操作方式,string 类提供了一系列成员函数和重载运算符,以便于对字符串进行操作和处理。 一、string…

步步为赢:打造一个酷炫而吸引人的Hadoop HDFS分布式文件系统集群部署方案

文章目录 版权声明一 分布式存储缘起二 分布式的基础架构2.1 大数据架构模式2.2 主从模式 三 HDFS的基础架构HDFS的角色组成 四 HDFS集群环境部署4.1 安装包下载4.2 Hadoop安装包目录结构4.3 修改配置文件,应用自定义设置4.4 分发Hadoop文件夹4.5 配置环境变量4.6 授…

Ubuntu安装最新版neovim

Ubuntu安装最新版neovim 一、前言 对于neovim版本很重要,有很多插件几乎都要要求neovim版本在0.8或者0.9。但是有一个很严重的问题就是,Ubuntu使用sudo apt install neovim的版本很低达不到要求(写文章时是0.7) 二、解决方法 …

罗勇军 →《算法竞赛·快冲300题》每日一题:“质因子数量” ← 快速幂、素数筛

【题目来源】http://oj.ecustacm.cn/problem.php?id1780http://oj.ecustacm.cn/viewnews.php?id1023【题目描述】 给出n个数字,你可以任意选择一些数字相乘,相乘之后得到新数字x。 其中,x的分数等于x不同质因子的数量。 请你计算所有选择数…

企望制造ERP系统 RCE漏洞[2023-HW]

企望制造ERP系统 RCE漏洞 一、 产品简介二、 漏洞概述三、 复现环境四、 漏洞复现小龙POC检测 五、 修复建议 免责声明:请勿利用文章内的相关技术从事非法测试,由于传播、利用此文所提供的信息或者工具而造成的任何直接或者间接的后果及损失,…

JDBC封装与设计模式

什么是 DAO ? Data Access Object(数据存取对象) 位于业务逻辑和持久化数据之间实现对持久化数据的访问 DAO起着转换器的作用,将数据在实体类和数据库记录之间进行转换。 ----------------------------------------------------- DAO模式的组成部分 …

考研算法第46天: 字符串转换整数 【字符串,模拟】

题目前置知识 c中的string判空 string Count; Count.empty(); //正确 Count ! null; //错误c中最大最小宏 #include <limits.h>INT_MAX INT_MIN 字符串使用发运算将字符加到字符串末尾 string Count; string str "liuda"; Count str[i]; 题目概况 AC代码…

【自用】云服务器 docker 环境下 HomeAssistant 安装 HACS 教程

一、进入 docker 中的 HomeAssistant 1.查找 HomeAssistant 的 CONTAINER ID 连接上云服务器&#xff08;宿主机&#xff09;后&#xff0c;终端内进入 root &#xff0c;输入&#xff1a; docker ps找到了 docker 的 container ID 2.config HomeAssistant 输入下面的命令&…

音视频FAQ(一):视频直播卡顿

一、摘要 本文介绍了视频直播卡顿的四个主要原因&#xff0c;用户网络问题、用户设备性能问题、技术路线的选择和实现问题。因本文主要阐述视频直播的卡顿&#xff0c;故技术路线的实现指的是&#xff1a;CDN供应商的实现问题&#xff0c;包含CDN性能不足、CDN地区覆盖不足。对…

【JAVA】我们该如何规避代码中可能出现的错误?(一)

个人主页&#xff1a;【&#x1f60a;个人主页】 系列专栏&#xff1a;【❤️初识JAVA】 文章目录 前言三种类型的异常异常处理JAVA内置异常类Exception 类的层次 前言 异常是程序中的一些错误&#xff0c;但并不是所有的错误都是异常&#xff0c;并且错误有时候是可以避免的&…

Spring Cloud面试突击班1

Spring Cloud面试突击班1 1.Spring Cloud 中有哪些组件&#xff0c;整个项目架构中我们的重点又有哪些&#xff1f; Spring Cloud 是一套基于Spring Boot的微服务解决方案。 Spring Cloud生态在国内主流的分为两套&#xff0c;一套是以奈飞开源的Spring Cloud Netfilx 20%&a…

Redis持久化:RDB和AOF机制详解

目录 1.Redis持久化简介 2.RDB持久化 2.1 什么是 RDB 持久化&#xff1f; 2.2 触发方式 2.3 Redis.conf中配置RDB 2.4 RDB 更深入理解 2.5 RDB优缺点 3.AOF持久化 3.1 什么是 AOF 持久化&#xff1f; 3.2 如何实现AOF 3.3 Redis.conf中配置AOF 3.4 深入理解AOF重写 4.RDB和…

【LeetCode75】第三十一题 反转链表

目录 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 代码&#xff1a; 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 最经典的链表题&#xff0c;没有之一&#xff01;&#xff01;&#xff01; 强烈建议直接把模板记住&#xff01;&#xff01;&#xf…

4.物联网LWIP之C/S编程

LWIP配置 服务器端实现 客户端实现 错误分析 一。LWIP配置&#xff08;FREERTOS配置&#xff0c;ETH配置&#xff0c;LWIP配置&#xff09; 1.FREERTOS配置 为什么要修改定时源为Tim1&#xff1f;不用systick&#xff1f; 原因&#xff1a;HAL库与FREERTOS都需要使用systi…

iTOP-STM32MP157开发板编写驱动程序和应用程序

通过 40.1 章节的学习&#xff0c;我们已经把内核层和用户层实现数据交互的基本概念搞懂了&#xff0c;在上一章节的基础上我们编写驱动程序实现在内核层与应用层传数据。 新建 file_operation.c 文件在 Ubuntu 的/home/driver/04_file_operation 目录下&#xff0c;可以在上次…

用easyui DataGrid编辑树形资料

easyui显示编辑树形资料有TreeGrid元件&#xff0c;但是这个元件的vue版本和react版本没有分页功能。virtual scroll功能也表现不佳。 我用DataGrid来处理。要解决的问题点&#xff1a; &#xff08;1&#xff09;如何显示成树形。即&#xff0c;子节点如何有缩进。 先计算好…

Kafka 什么速度那么快

批量发送消息 Kafka 采用了批量发送消息的方式&#xff0c;通过将多条消息按照分区进行分组&#xff0c;然后每次发送一个消息集合&#xff0c;看似很平常的一个手段&#xff0c;其实它大大提升了 Kafka 的吞吐量。 消息压缩 消息压缩的目的是为了进一步减少网络传输带宽。而…